DAinamic Software & Library
c/o W. Hermans
Mottaart 20 B-3170 HERSELT

D - BASIC

m version 2.2 + extensions

DAlnamic software

INTRODUCTION

Because some bugs were detected in DBASIC V2.1 a new release
of the DBASIC language was neccesary. "

In this new release, DBEASIC V2.2, all known errors are
corrected. Also some new statements have been implemented
and some signifficant changes concerning the DAI operating
system have been made. ’

Also included aon the DBASIC V2.2 package are some standard
extensions of the language. These extensions handle - 1/0-
device control, programmable function keys and structured
listing % cross—reference output.

An SFL assembly language source of these extensions is added
to enable you to match the extensions performance to your
own needs. For compatibility reasons however, do nct change
the syntax of commands and functions !!

how to read this manual

This amlcmu is a mcmﬁumamzﬂ to the Umbmmn V2.1 manual.

It is devided into 2 chapters.

Chapter 1 : Covers a variety of topics.
Chapter 2 : Eriefly describes new statements.
Chapter 3 : A general description about adding extensions.

Standard extensions are described in appendix A to B.

version 2.2 /B
W.Coremans 1/1/85
(c) DAInamic 1985

CHAPTER 1
1.1 ERRATA IN THE DBASIC V2.1 MANUAL

" For a clear understanding of the DBASIC V2.1 manual some
errors have to be corrected :

page 23
line 20 change : 60 FOR I=0 TO 10:PRINT FAC! (N):NEXT

in : 60 FOR I=0 TO 10:FRINT FAC!(I):NEXT
line 23 change : N¥{N-1) if N>O

in : N*(N-1)! if N>O
line 28 change : 30 ELSE FOR I=1 TO N:T!=T!*I:NEXT

in : 30 ELSE FOR I=1 TO N:T!=T!*I:NEXT:FN=T!
page 2B
line 21 change : Example : 10 PROCEDURE DUMMY I

in : Example : 10 FROCEDURE DUMMY VAR I

1,2 INITIALISATION

DEASIC V2.2 is an auto-start program (see DBASIC VZ.1 ma-
nuall). After DBASIC V2.2 has been loaded the textfile
CONFIG.TXT will be loaded and submitted to the DBASIC com-—
mand, interpreter. This submit Ffile facility allows DEASIC
comnands to be batched for automatic processing. The stan-
dard submit file just loads all the extensions from tape.
Since the file type byte of the file CONFIG.TXT is 1, it is
easy to change the file contents :

—enter the commands in EDIT mode
ex. *EDIT
FEXTEND "DCR"
DCR 1
REW
uT
Z.3
R
B
LOAD "MYPROG"
RUN
~type [BREAKI, [BREAK]
~save the EDIT buffer
{ex. DSAVE DEEK {(#A2) ,DEEK (#A4):; "CONFIG.TXT")

After loading DBASIC V2.2, this submit file will load the

DCR extension, select DCR 1, REWind DCR 1, load an wutility
file, load the DBASIC program "MYPROG" and run it.

Caution : allways include the commands

FEXTEND "DCR™ or SEXTEND "CAS™
DCR I[<dcr number >3 CAS [<cas number>]

in CONFIG.TXT, otherwise you could get problems
like loosing the hard break facility.

Note : vou can directly activate a submit file located in
the EDIT buffer by POKE #296,1

B

1.3 COMPILATION

When loading a compiled DBASIC program an extra compilation
pass will be performed before execution of the program. This
compilation pass will initialise the absblute run address of
extended commands and extended functions (see 1.4).

Due to this absolute run address, often used extended
commands and functions will run much faster.

1.4 EXTENDED FUNCTIONS

In addition to extended commands, it is possible in DBASIC
V2.2 to define extended functions. An example of such an
exended function is the KEY#{({number of function key») which
will be explained in appendix B. How to implement your own

extended functions can be read in chapter 2.

1.5 ERROR CODES

DBASIC V2.2 krows 2 new error—numbers and error-messages :

error— error-message
number
54 ELSIF WITHOUT IF

A ELSIF statement is encountered for which there
is no previous, unmatched IF statement.

57 UNDEFINED FUNCTION
The appropriate DBASIC extension to which the
function belongs is not in memory

1.4 READ DONLY CODRE

The complete DBASIC machine language program and the
extensions #S8SYSTEM, DCR and CAS are written in read only
code. This means that they all can be stored for instance
free FROM banks on a WENDOS system. About 1ik bytes of
random acces memory would become available for data storage.
The system ram used by DBASIC is completely located below

Zech. S0, using a switched eprom bank system, the same
memory map as in BASIC V1.0 (1.1) can be maintained.

I+ there is enough interest, it will be concidered to
devellop such a system.

CHAPTER 2
NEW COMMANDS AND STATEMENTS IN DBASIC V2.2

Note : for format notation see DBASIC V2.1 manual

2.1 IF . THEN ... ELSIF . THEN ... ELSE ... END IF

Format : IF <logical expression 0> THEN [<{statements>]
[LELSIF <logical expression I> THEN [<statements>13

[[ELSE [<{statements>11]
ENDIF

Valid : statement

Purpose : The ELSIF . THEN statement is added and can be
very efficiently used to make selections. More
than 1 ELSIF . THEN statement can be placed
between the IF ... END IF.

When the result of <logical expression I is true,
the THEN clause is executed. 3

Example 3 ...
100 IF ERR=11 THEN PRINT "block length error”
110 ELSIF ERR=12 THEN PRINT "insufficient memory"
120 ELSIF ERR=13 THEN PRINT “checksum error"
130 ELSIF ERR=14 THEN PRINT "data drop-out error"
140¢ ELSE PRINT "error number";ERR
150 END IF

2.2 TITLE

Format : TITLE <string expression’
Yalid : statement

Purpose : To name the program.
The evaluation of <string expression’> will be the
name of the program.

Remarks : The program name will be used as a default for
some commands. When there is no file name
specified in the SAVE command, the program name
will be used as file name.

The $LIST and XREF commands of the standard
XREF-extension take the program name as a default
listing header.

Example : 10 TITLE “BRAPHICS ANIMATE"
20 ...

CHAPTER 3

HOW TO IMPLEMENT NEW STATEMENTS AND FUNCTIONS

3.1 GENERAL

Extension can be used to add new functions, commands and/or
statements to the existing instruction set of DBASIC.

Using a standard DBASIC extension as example, it will ’'be
explained how extra functions and statements can be program-
med in assembly language. ;

Some knowledge of B08B0 assembly language programming.and the
DAI operating system is desired for understanding.

3.2 THE EXAMPLE : function keys

Function keys are certainly a very usefull extension of
DBASIC : they can save you a lot of typing work and they can
be reprogrammed whenever needed.

The statements and functions controlling the function keys
are 1

KEY to program the function keys

KEYLIST to list the function keys

KEYON - to enable function keys

KEYOFF to disable function keys

KEY#® represents the contents of a function keys

note : For the correct syntax see appendix B.
See alsoc the SFL assembly language source file KEY
V2.2 on the DBASIC V2.2 package.

3.3 COMMANDS AND STATEMENT

To link commands or statements to DEASIC you have to provide
a table specifying the syntax, runaddresses etc...

Listing 1 (page 9), a piece of SPL macro assembler source
code of a program to create the KEY extension, defines the
table-layout.

The elements of the table are described below :
—-sxtension name :

Is used for error-reporting and the $DELETE command.
-extension id 3

Not used anymore in DBASIC V2.2 due to an extra compilation
pass. Any value between Oh and Offh is valid.

-relocation table :

Is used in $EXTEND and points to a table with all the
addresses to be relocated. In order to be completely
relocatable a machine language program should only contain
2-byte word memory-references (ex. avoid the use of LOW and
HIGH operators in MACRO 80). After loading and relocation of
the extension the relocation table will not be kept on line.

note : In the SFL assembly language sources on the DBASIC
V2.2 package, a macro is included to generate this
relocation table automaticaly.

-separators :

Is a set of 8 punctuation marks :mmama,ucwmau encoding and
listing of the commands. Any argument is always preceeded by
one of these separators.

—command string :

Identifies the command. Only the lst character of the
command string can be non-alphanumeric (ex. % in $EXTEND).
Note that the length byte preceeding the command string has
to be of the binairy form 0000 1111, with 1111 the length of
the command string.

—encode control s

It's binairy form is ccXX 1111 (X stands for don't care).

with 111] number of possible arguments+2
ce=X1 statement valid in program
cec=1X command valid in direct command mode

~grecution address :

Points to the startaddress of the command’'s execution code.

~argument syntax s

it‘s binairy form is tttt sssf

with sss the number of the separator which preceeds

the argument (from O to 7).

=1 the argument preceded by separator sss is
obligatory. -
F=0 the argument preceded by separator sss is

optional.
tttt=0000 the argument is a floating point expression.
tttt=0001 the argument is an integer expression.
tEtt=0010 the argument is a string expression.
tttt=0011 the argument is a variable reference.
tttt=0111 the argument is an array reference.
tttt=1011 the argument is a group of variable referen-—
ces separated by ', (cfr. READ).
tttt=1111 the argument is a group of array-references
separated by ‘", .
tttt=1100 the argument is a group of expressions
{either integer~, floating point— or string
expessions) separated by ;7.

In our example the encode control of KEY is Oc4h, thus KEY
can be used as direct command or as statement in a program.
The length of the info is 4, 2 bytes for the run—address and
‘2 bytes of argument syntax description :

argument syntax 17h : an integer expression preceeded by
separator 3 (a blank) has to be supplied.
argument syntax 21h : an string expression preceeded by

g serarator 0 (a ’,’) has to be supplied.

=

3.4 FUNCTIONS

The table layout is different for functions.

The elements are :

—function string :

Identifies the function. The 1st character of the function
string can be non-alphanumeric, the last character may
indicate its type (ex. # in KEY#).

Note that the length
to be of the binairy
the function string.

-encode control :

It’s binairy form is

with 1111
tttt=0000
tttt=0001
tttt=0010

-pxecution address :

byte preceeding the funckion string has
form 0001 1111, with 1111 the length of:

tttt 1111.

number of possible arguments+2

it is a floating point type function
i€ is an integer type function

it is a string type function

Foints to the startaddress of the function’s execution code.

—argument syntax :
it’s binairy form is

with tttt=0000 the
tttt=0001 the
tttt=0010 the
tttt=0011 the
tttt=0111 the

In our example the
23Zh, thus KEY¥ is a

info is 3, 2 bytes
syntax description :

argument syntax 10
supplied.

X.5 RUNTIME

The runtime code usualy can be seen as a sequention of

parts :

part 1 evaluate th

~

part 2

se e

parameters.

For evaluation of

tttt 0000

argument is a floating point expression.
argument is an integer expression.
argument is a string elpression.
argument is a variable reference.
argument is an array reference.

encode control of the function KEYF is
string type function. The length of the
for the run-—address and 1 byte for the

h = an integer expression has to be

2

e arguments.

do some processing using the evaluated arguments as

the arguments you need the addresses of

standard DBASIC routines. As you can see in the SPL sources

on the DBASIC VZ.

2 package the number of these DEASIC

routines is very small.

Note that in evaluating optional arguments a test is done on
a O-byte in the textbuffer. This is because for a non-

supplied optional

argument a O-byte is encoded in the

textbuffer (see XREF source).

3.6 EXTENSION CONTROLS

Five

control
commands.

pointers in the DBASIC system ram are reserved to
encoding, listing and evaluation of extended

These five controls are :

.USCMTE
(0c8h)

SEFTAE
(Ocah)

ROTSAY
{(Occh)

ERRREF
{Oceh)

USCREC
(33h)

s

is a pointer to the first extension-root (=start
of 1st table)

A next extension is linked to the previous
extension through @ the next table pointer
(=relocation table pointer).

is a pointer to the separator table during
encoding.

is used in error-handling. If ROTSAV=0h an error
will be considered to be generated in a DBASIC
command, else the error will be considered to be
a specific extension error and ROTSAV points to
the extension root. Thus if we want explicit
extension error messages we have to set ROTSAV
equal to ow extension root (PFEROT in our
example) .

.Then we would get error messages of the form :

KEY ERROR nnn or
KEY. ‘special error message’ {(see ERRREF)

is a pointer to a special extension-error-—
reporting—routine. Note that in our example
ERRREF 1s set to FDBERR i.e. DBASIC error

messages will be printed.

is a Jjump to the extension’'s auto-recovery
routine. If an error occures during execution of
an extended command, you may have to restore some
system data or anything else that has been
changed by the extended command. USCREC allows
you to do it.

USCREC can also be used to set or reset ROTSAV
and ERRREF (see. DCR V2.2)

& ~

-y

———extension table-——

3IH

‘KEY’
OEH
FFKID
PFKTBL
‘38 /.=
SH
‘KEYON
OC2H
RFFKON
&H
‘KEYOFF *
OC2H
RPFKOF
3H

‘KEY”’
QC4H
RPFE

17H

21H

7H
‘KEYLIST'
OC2H
RPFELS
14H
TKEY$”
RFFK*

10H

OH

sextension name

sextension id.
jrelocation table
;separators

senable function keys
sencode control KEYON
srun—address KEYON

jdisable function keys
sencode control KEYOFF
srun—address KEYOFF

sdefine function
encode control
run—address KEY

a3 a8 2

w& ex./sep

slist function keys
encode control
run—address KEYLIST
Ix for functions
;function KEYS$

srun—address KEY#F

APPENDIX A
STRUCTURED LISTING AND CROSS—-REFERENCE
GENERAL

The XREF extension adds 2 new commands to the DEASIC
instruction set. These commands enable you to 1list your
programs in a structured way and/or to become a cross-
reference output of all the symbols.

By simply typing $LIST a structured listing of the complete
program, followed by a cross-reference is produced.)
The XREF command will skip the structured listing and will
directly output a cross-reference.

Structured listing means @

DBASIC program lines are spread out on several listing lines
to #nable correct indentation of :

.iteration structures {ex. FOR/NEXT,REFEAT/UNTIL,WHILE
2 C- /WEND) .
.salection structure {ex. IF/ELSIF/ELSE/END IF).
.definition structures {(ex. PROCEDURE/END FROC,FUNCTION
) JEND FHN) .

A counter also shows the level of indentation.
Snecial care has been taken for some details :

.line numbers are printed rigth justified

keywords, symbols or text will not be splitted at the

= i IC cross—reference groups all symbols
inte & different classes :

.extended commands % functiens.. (X option)

L ProCedUreS. . casaansasnsrananuss (P Option)
L FUNCEiONS. s cnsunonrnsnsanecansa (F option)
clabelS.cecscancaccasansasannenn (L option)

CAFFAYS.:nnsrsssnsncssnnccsasnsaas (A Option)
evariablesS..ccsrsssscsnsnnannensas (V option)

Special care has been taken for some details :

. for functions,arrays and variables the type is
indicated.) 4)
. for functions and arrays the () indicates the

necessity of arguments.

.line numbers are rigth justified.

.the +First 1line number indicates the line where the
symbol is defined (ex. procedures,functions,labels,
arrays) or used the first time.

10

1. $LIST
Format :

$LISTL <first line>]l <last line>][,<header>1[;<options>]
line from where to start listing
line where to end listing

the header on each new page

options for the cross-reference

with : <first line>
<last line>
<header >

<options>

Purpose : to produce a structured listing followed by a
cross-reference output.)

Remarks : <first line> and <last line> are integer expres-
sions, <header’> and <options’» are string expres-
sions. The default for <first line?» is the first
line of the program. The default for <last line>
is the last line of the program. The default for
<header> 1is the string expression following the
TITLE statement. The default for <options> is
"XPFLAV". .

Example : *#LIST 100 1000,"TEST FROGRAM"; "FFP*
This command asks for a structured listing starting with
line number 100 up to line number 1000 and produces a cross-—

reference of functions and procedures. The heading TEST
PROGRAM is printed on top of each page.

XREF

Format : see #LIST

Furpose : to produce a cross—-reference output.

Example : %*XREF 100 1000;“FP"

This command asks for a cross-reference of all functions and
procedures used somewhere betwsen line number 100 and line

number 1000. The default heading is printed on top of each
page.

ERROR MESSAGES

The XREF extension knows 2 specific error messagss :

error— error message
number

i XREF WRONG DBASIC VERSION
XREF can not work correctly with this version of
DBASIC (ex. DBASIC V2.1)

2 XREF INVALID OPTICN
An option has been specified, other than X,P,F,L,A
or V.

Besides these 2 error messages XREF could also generate
DBASIC error messages because a nOBwamﬂ»OJ has to be done.
{ex. MISSING WEND...etc...)

11

APPENDIX B
PROGRAMMABLE FUNCTION KEYS
GENERAL.

The KEY extension is designed to add function keys to the
keyboard of the DAI pc. Because the DAI pc does not provide
separate keys to represent function keys, 2 keys have to be
pressed simultaniously : press [CTRL] together with a
numeric key (0 to 9). The shift lock can be set or reset by
pressing [SHIFT] and [CTRL] at the same time.

If you are using a separate keyboard (ex. connected via
RS232) vyou will have to adapt the detection of a function
key in the SFL assembly language source file KEY V2.2.

The function keys can be used where ever you want : in
direct command mode, in edit mode, in the INPUT statement,
in the GETC function and so on.

Function keys can contain ascii characters from Oh to 7fh,
characters from 8Ch to Offh will represent a BREAK.

By default there are 256 bytes reserved to store function
keys, however this can be easily modified by changing the
KEY V2.2 source file.

ETATEMENTS AND FUNCTIONS
Four statements {(also valid in direct command mode) and one

string type function can be used to program and to control
the function keys :

Format : KEY <integer expresion?,{string expression>
Purpose : to define a function key

Example : ¥FOR I=0 TO 9:KEY I,"":NEXT
this command will erase all the function keys

#KEY O,CHR% (0)+CHRF {18) +CHR% (#D)
this command will define the end-of-buffer mark
which can be used in edit mode to delete all the
text following this mark.

2. KEYON

Format : KEYON

Furpose : to enable fu

Hw KEYOFF

Format : KEYOFF

Purpose : to disable functicn keys
4. KEYLIST

.ﬂﬂwamn : KEYLIST

Purpose : to list the function keys
12

5. KEYS$
Format : KEY#(<Kint. ex.>)
Purpose : represents the contents of function key <int. ex.>
Example : *KEY O0,"":FOR I=1 TO 10:KEY O,KEY#(0)+CHR%(8) :NEXT
this command line will program function key 0 to
delete 10 characters.
10 FOR I=0 TO 9
20 IF LEFT$(KEY$(I))<>#D THEN KEY I,KEY#(I)+CHR¥ (#D)
IO END IF .
40 NEXT

this few program lines will add a carriage return
to the function keys if needed.

ERROR MESSAGES

The KEY extension does not have specific error

‘messages. Instead DBASIC error messages are printed while

the ERR# ‘intrinsic’ function will be set to 'KEY'.
The aoww frequent error Bmmmmumw are :

KEY NUMBER OUT OF RANGE
The key number specified in the KEY statement or the KEY$
function was not in the range [0,9].

KEY DOUT OF STRING SFPACE
No memory is available anymore to store function keys.

