DAInamic Software & Library
c/o W. Hermans
Mottaart 20 B-3170 HERSELT

D - BASIC

DAlInamic software




D - BASIC

WELCOME TO THE WORLD OF DBASIC...

Soon after he got his DAIpc, Willy Coremans joined DAInamic
redaction and told us he needed a lot of extra commands and
features for easy programming. We all agreed, but we did not
believe this was possible without a lot of CALLM’s,mlp-trics
and POKING around in system ram.

Here it is now : a complete integrated BASIC-extension,
bringing DAI-BASIC close to PASCAL and other structured
programming languages.

We want to thank Willy Coremans for his one-year super—job,
Frans Couwberghs did the typing work of this manual, and wdw
did the final revision.

We also want to thank you if you send your suggestions,
ideas, appreciations about DBASIC to :

Willy Coremans
Hoekheide 27
B 3140 RAMSEL

tel @16/697419 ii_

W.Hermans




INTRODUCTION

DBASIC V2.1 is a very powerfull high-level language written
for the DAI-personal computer.

Besides, DBASIC V2.1 is 100 7 compatible whith the ROM-resi-
dent BASIC V1.2 and BASBIC 1.1 of the DAI-pc.

DBASIC V2.1 is a software product, no hardware adaptions are
needad.

DBASIC V2.1 adds to the existing set of BASIC commands and
statements a number of new commands and statements.

These new statements are principally added for structured
programming.

Special graphical commands (ex. Turtle—graphics) or commands
to operate 1/0-devices (ex. Memocom—MDCR) are not included
on purpose : Not everyone will use the graphic possibilities
of the DAI-pc or will have a DCR-drive connected, therefore
some code would be useless and decreases the amount of memo-—
ry available for DBASIC programs.

However, if neccessary, these special graphical commands or
1/0-driving packages can be integrated in DBASIC.They can be
grouped in so-called DBASIC-EXTENSIONS, loaded and relocated
or deleted when needed.

For explanation on these extensions, see the appropriate
documentation. (Appendix D and E) :

How to read this manual

This manual is divided into four chapters.

Chapter 1 : Covers a variety of topics.

Chapter Z : Describes the DBASIC-statements.

Chapter 3 : Describes the added intrinsic functions.
Chapter 4 : Handles about procedures and functions.

Some helpfull information is gathered in appendix A to E

Please note that only information is given on
substantially new topics. For syntax description
of already existing statements and functions
refer to the DAI-pc manual or (for Dutch-speaking
people) to ‘Gestructureerd programmeren met
DAI-BASIC’ from Bruno Van Rompay.

D-BASIC 1



CHAPTER 1

1 General information about DBASIC VZ.!

1.1 INITIALISATION.

At this moment two versions of DBASIC V2.1 exist, a Memocom—
MDCR version and an audio-cassette version.

The DCR-version starts whith a USER-file, so resetting the
DAl-pc while the cassette without write-plug is in DCR-drive
D will automatically start DBASIC V2.1. Besides DBASIC V2.1,
the Memocom MDCR-driving package is automatically loaded and
relocated. (See Appendix E)

The audio-cassette version starts whith an autostart loader.
(Type : *UT, >I3, >R )

1.2 OPERATION-MODES

Just like every BASIC-version, DBASIC can be used in two
di{ferent modes of operation.

DBASIC can be used in the direct—-command mode and in
program—mode.

in the direct—-command mode a limited set of commands can be
used. They are executed immediatly.

DBASIC is in the program—-mode during execution of a program
stored in memory.

Before ececution, in both modes, the commands and statements
will be compiled first.

During compilation the program and/or command line is
checked for structural errors.

Compilation is, either executed automaticaly, (after typing
the command line or, for a program, after giving the RUN
command) or after giving the COMPILE command. (See chapter 2)

1.3 PROGRAM FORMAT

A DBASIC program consists of a number of program lines.
A program line has the following format 1
(Square brackets indicate optional parts)

nnnnn [<label>] statement [:statement...] <carriage return>

1.3.1 LABELS

Program lines can be identified by a label. Statements
refering to a line by label have been build in.

Format : <label> 1 "<name)>
<name> : Up to 14 alpha-numeric characters,first
character must be alphabetic.

Remarks 3 All commands and statements, except LIST and EDIT
which refer to a line by linenumber can also refer
to that line by a label.

2 D-BASIC

1.4 ARRAYS

A limitation of array-handling power in BASIC V1.0 and V1.1
is the maximum of 255 elements/dimension.

DBASIC specifies a maximum dimension that can be changed by
the user. (Default = 2000)

To change the maximum dimension your program should include
for instance :

18 DIMMAXZ=5@020
20 DOKE #56,DIMMAXZ

These two statements will set the maximum dimension to S000.

1.5. EXPRESSIONS

Most DBASIC statements accept one or more expressions for
their arguments. Besides 'intrinsic’ functions, variables
and constants, an expression can contain alsgo ‘user defined”’
functions.
These functions can be defined by DEF FN or FUNCTION. (See
chapter 2)

NOTE : -No assumption of the expression type is made 3
defined functions can be used in logical expressions
as well as in mathematical—- or string- expressions.

-The priority of ‘user defined’ functions is the same
as the priority of ‘intrinsic’ functions.

1.6 ERROR TRAPPING

In DBASIC all runtime errors can be trapped.

Compile time errors, either during semi-compilation from the
edit-buffer, from screen or during compilation whith COMPILE
or RUN commands, cannot be trapped.

For a detailed analysis of the error which occured, the ERR,
ERL and ERR$ ‘'intrinsic’ functions can be used. (See chapter
3 and appendix B and C)

A complete list of error-messages is given in appendix A.

1.7 COMPILATION

Before starting program or command-line execution, the
program or the command line has to be compiled first.
Compilation is done in DBASIC pseudo-code.

Compilation will be done automatically after typing a
command line (Compilation of the command-line) and after
giving the RUN command. (Compilation of the program)

Before saving a program, you can compile it by the COMPILE
command, so when you LOAD the program, it automatically
start execution without recompilation first.

(See chapter 2)

D-BASIC 3



1.8 Protection.

To gain control over the ROM-resident coperating system,
system—RAM locations @H to 4@H had to be chenged drasticaly.
To protect the user against changing this system—RAM, no
access of memory-locations @H to 4@H is allcwed anymore.
Trying to access these memory-locatione will result in a
‘NUMBER OUT OF RANGE® error. Also in utilyties the access of
these addresses is forbidden.

1.9 Implicit integer.

When 1loading DBASIC the default type for constants and for
all variables will be set to implicit integer.

In all examples of this manual, variables will be considered
as implicit integer unless otherwise stated.

4 D-BASIC

CHAPTER 2

DBASIC COMMANDS AND STATEMENTS

Only substantially new DBASIC commands and statements are
described in this chapter. Each description is formatted as
follows :

Format : Shows the correct format for the instruction.
See below for format notation.

Valid t Tells wether it can be used as command only, in
program only or both.

Purpose : Tells where the instruction is used for.

Remarks : Describes in detail how the instruction is used.

Example : Shows sample programs or program segments that
demonstrate the use of the instruction.

Format notation

Wherever the format of a statement is given, the following
rules apply :

1. Items in capital letters must be input as shown.

2. Items in lower case letters enclosed in angle brackets
{(<>) are to be supplied by the user.

3. Items in square brackets are optiocnal.

4. All punctuation except angle brackets and square brackets
(i.e., comma’s, parentheses, semicolons, hyphens, equal
signs) must be included where shown.

S. Items <followed by an ellipsis (...) may be repeated any
number of times (up toc the length of the line).

2.1 BREAK

Format : BREAK ON
BREARK OFF

Valid ¢ statement
Purpose : To enable or disable interruption of the program.

Remarks 3 After executing a BREAK OFF statement, program
execution cannot be suspended anymore by typing
the BREAK-key.

Howaver the BREAK-key will not be disabled
completely.

Stopping your cassette-drive or the sound-gene-—
rator is still possible.

Example : 1@ BREAK OFF:REM NO INTERRUPTION ALLOWED

100 BREAK ON: REM ALLOW INTERRUPTION

D-BASIC I




2.2 COMPILE

Format
Valid

Purpose

Remarks

COMPILE
direct command

To prepare a program for execution and to check on
structural errors.

The compiler will be called automaticaly after :

- typing a command line in direct—command mode to
compile this command line before execution.

~ giving the RUN command if the program in memory
has not been compiled yet.
Thus when 1loading an already compiled program
compilation will be skipped.

A compiled program will be autostart.

A list of all errors dedectable during compilation

is given in appendix B.

Labels, procedures and functions will remain

undefined untill the program has been compiled.

2.3 CONTINUE

Format
Valid

Purpose

Remarks

Example

& D-BASIC

CONTINUE
command/statement

To continue program execution after the BREAK-key
has been typed or a STOP statement has been
executed.

As direct-command CONTINUE executes as the CONT
command.

However, in a program,
interrupt service routine (started by typing the
BREAK-key) and resumes program execution at the
point where it was interrupted.

CONTINUE will end the

i@ ON BREAK GOTO "INTERRUPT

635000 "INTERRUPT CURSOR @,0

6301@ PRINT "NO BREAK ALLOWED"3:WAIT TIME 20
65820 CURSOR @,8:PRINT SPC(60)3

&5038 CONTINUE

2.4 DEF

FN /7 FUNCTION

Formats

or

with

{function definition>

note

Valid
Purpose

Remarks

Example @

Nota

DEF FN <function name> ({parameter list>):
<function definition>:END FN

DEF FN <function name> ({parameter list>)=
{expression>

<function name> : <name>[<{type indicator>1]
<type indicator> : !, Z or $
{parameter list> : <value—par> VAR<var-par>
ARR<arr—par> FN<{fn—par>
<value-par> : subscripted or unsubscripted
variable-references separated
by commas.
unsubscripted variable names.
subscripted variable names.
unsubscripted variable names
DBASIC statements containing at
least one FN = statement.

{var-—par>
{arr-par>
{fn—par>

AJNUMﬂﬂZxn<201nnw:umﬂmuwmnnnU<ﬂ3ﬂﬂcznﬂuoz
keyword. .

statement
To define a function that is written by the user.

The value—-parameters will be assigned a value
equal to the evalution of the matching expression
in the caller.

The variable-parameters will refer to the matching
unsubsripted variables in the function caller.
These variable—-parameters can be used to transfer
values, condition—codes, messages etc... to
variables not used in the function.

The array—parameters will refer to the matching
subscripted variables in the function caller,
denoted as <name>[<{type indicator>l(}.
Array—-parameters can be used to transfer complete
arrays between the function-caller and the
function.

Function-parameters will rafer to the matching
expressions in the function-caller.

Thus functions can perform different calculations,
string-handling etc... using different expressions
in the function-caller.

Faculty of a number.

10 FUNCTION FAC(I)

20 IF I=@ THEN FN=1

32 ELSE FN=I®#FAC(I-1)3END IF
40 END FN

For more explanation and more examples see CHAPTER
4 : Procedures and functions.

D-BASIC 7



2.5 DEF PROC / PROCEDURE

Format @

with @

note

Valid H
Purpose :

Remarks :

Example :

Note :

2.6 LOCAL

Format ¢
Valid H

Purpuse 1

Remarks @

Example 1

8 D-BAS

e

0
Bl
«

DEF PROC <name> [<parameter list>]:
{procedure definition>:END PROC

parameter list>: see DEF FN / FUNCTION
{procedure definition> :DBASIC statements.

The DEF PROC keyword can be replaced by the
PROCEDURE keyword.

statement.
AN

To define a procedure written by the user.

The procedure parameter—-list obeys exactly the
same rules as the function parameter-list.

Simulate HOME (Apple-I1I)

i@ DEF PROC HOME:PRINT CHR$(12)3;:END PROC
10@ "START HOME
110 CLEAR 2800:...

For explanation and more examples see CHAFTER 4 :
PROCEDURES AND FUNCTIONS

LDCAL <variable 1>,...,<{variable i>,...,<{variable n>
statement

To define 1local variables in a procedure or
function.

The variables (variable 1) to <variable n>
specified in the LOCAL statement will be used
local in the function or procedure : 1i.e the
value 2ssigned to this variables before calling
the the procedure or function will not have been
changed after the procedure or function call.

1@ PROCEDURE SWAP VAR X$,Y$

20 LOCAL HULP¥

30 HULP$=X$:1X$=Y$: Y$=HULPS$

4@ END PROC

120 A$=HELLO :1B$="BYE"

11@ HULP$="THIS VARIABLE WILL NOT BE CHANGED"
128 SWAP A%,BS$

130 PRINT A$,B$ HULPS

2.7 DOKE

Format
Valid H

Purpose :

Remarks @

Example 1

2.8 ERROR

Format @
Valid ]

Purpose @

Remarks @

Example 3

DOKE <integer expression 1>,<integer expression 2>
statement/command

To put the 2-byte value <integer expression 2>
at address location <integer expression 1>, low
byte first.

This statement is analog to the already existing
POKE statement.

1@ FOR I=#300@ TO #4008 STEP 2
20 DOKE 1,0

ERROR <integer expression>
statement/command

To simulate the occurance of a DBASIC error, or to
allow errorcodes to be defined by the user.

The value of <integer expression> must be in the
range [@,2551.

If the value of <integer expression’> equals an
error code already in use by DBASIC, the error
statement will simulate the occurance of that
error and the corresponding error—-message will be
printed.

To define your own error code, use a value that is
larger than any used by DBASIC. (55 in DBASIC V2.1)
This user—-defined error code may then be con-
veniently handled in an error trap routine.

See also appendix C : Error reporting.

1@ ON ERROR GOTO "TRAP

103 CURSOR 8,108

11@ INPUT "PASSWORD 3 "jP$

120 IF P$<>PASSWORD$ THEN ERROR 20@:END IF
18088 "TRAP IF ERR=208 THEN CURSOR @,0
10218 PRINT "UNAUTHORISED USER"j;sRESUME 100
10228 ELSE RESUME NEXT:END IF

D-BASIC 9




2.9 GOSUB <label>

Format 11 GOSUB <label>

Valid 1 statement

Purpose :

To call a subroutine which starts at <label>.

Remarks 1 A subroutine must contain at least one RETURN

Example :

statement to branch
following the most recent GOSUB statement.

A subroutine may be called any number of times in
a program, and may be called from within another
subroutine. Such nesting of subroutines is limited
by the available stack-memory.

i@ PRINT CHR$(12);"FOR EXPLANATION TYPE ‘H'"
28 REPEAT CHAR=GETC:UNTIL CHAR<Z>@
2 IF CHAR=ASC("H") THEN GOSUB "HELP:END IF

1020 "HELP PRINT CHR$(12);“THIS PROGRAM WILL ...

2.18 GOTO <label>

Format
Valid H]
Purpose :

Example :

16 D-BASIC

GOTO <label>
statement

To proceed program execution at <label>.

10 GOTO "INIT
20 "START HOME:...
635283 "INIT CLEAR 5@20:...

63102 GOTO "START

back to the statement .

2.11 IF

. THEN ... ELSE ... END IF

Format

Valid

Purpose

Example

2.12 IF

IF <logical expression> THEN [<statement (s)>]
[:ELSE [<statement(s)11:END IF

statement

I1f the result of <logical expression> is true, the
THEN clause is executed.

If the result of <{logical expression> is false,
the THEN clause is ignored and the ELSE clause, if
present, is executed.

Execution continues with the statement following
END IF.

Both the THEN and ELSE clause can be several
program lines long.

iIF ... THEN ... ELSE ... END IF statements may be
nested. Nesting is only 1limited by the available
memory.

188 IF A<B THEN PRINT

1180 PRINT "A<B"

120 ELSE IF A>B THEN PRINT
138 PRINT "A>B"

140 ELSE PRINT

15@ PRINT "A=B"

16@ END IF

17@ END IF

. GOTO <label>

Format
Valid

Purpose

Remarks

Example

IF <logical expression> GOTO <label>
statement

To make decision regarding program flow based on
the result returned by a logical expression.

1f the result of <logical expression> is true,
program execution will proceed at <label>.

1f the result of <logical expression> is false,
program execution will proceed with the next
statement.

1823 PRINT "TO END TYPE ‘E°"
101@ REPEAT CHAR=GETC:UNTIL CHAR<>@
1020 IF CHAR=ASC("E") THEN "FIN

42000

"FIN END

D-BASIC 11




2.13 ON BREAK GOTO

Farmat - : OGN BREAK GOTO <linenumber)
ON BREAK GOTO <label>
ON BREAK OFF

Valid 1 statement

Purpose : To enable interrupt trapping and specifie the
first line of the interrupt handling routine.

Remarks : Once interrupt trapping has been enabled, pressing
the BREAK-key will cause a Jjump to the specified
interrupt handling routine.

To end the interrupt handling routine a CONTINUE
statement should be included in the program.

To disable interrupt trapping a ON BREAK OFF
statement should be executed.

Example : ...
28 ON BREAK GOT@ "INTERRUPT
£522@ "INTERRUPT PRINT “"CURRENT STATE : ";CURSTATS
65210 CONTINUE

2.14 ON ERROR GOTO

————————

Format : ON ERROR GOTO <linenumber>
ON ERRCR GOTO <label>
ON ERROR OFF

Valid : statement

Purpose : To enable error trapping and specifie the first
line of the error handling routine.

Remarks : Once error trapping has been enabled all errors
detected, including direct mode errors, will cause
a jump to the specified error handling subroutine.
To disable error trapping, execute an ON ERROR
OFF statement. Subsequent errors will print an
errcr message and halt execution. An ON ERROR
OFF statement that appears in an error trapping
subroutine causes DBASIC to stop and print the
error message for the error that caused the trap.
it is recommended that all error trapping routines
execute an ON ERROR OFF if an error is encountered
for which there is no recovery action,

NOTE 1f an error occurs during exacuticon of an error
handling routine, the DEASIC error meszsagl is
printed and exccution terminates. Error trapping

is not done whitin the error handling routine.
Example @ 10 ON ERROR GOTO 1£C3<
10703 IF ERRS>1@ THEN ON ERNIR
10710 REM ——— CGNLY TRAP ERRLR

10220 ELSE

sl el s ew

Z.15 ON

.. BOEUB <list of labels>

Format

Valid

Purpose

Remar ks

Example

2.16 ON

H

ON <expression> GOSUB <list of labels>
with <list of lables> 1@
<label 1>,...,<label i>;...,<{label n>

statement

To call one of several subroutines beginning at
<label>, depending on the value returned by the
evaluation of <expression>.

The value of <expression> determines which label
in <list of labels> will be called.

For example, if the value of <expression> is three
the subroutine beginning at the third label in
<list of labels> will be called.

When RETURNing from the subroutine execution will
proceed with the next statement.

1@ "START ON I GOSUB "INIT,"PROCESS,"QUIT
28 I=I+1:1607T0 "START

.« GOTO <LIST OF LABELS>

Format

Valid

Purpose

Remarks

Example

ON <expression> GOTO <list of labels)>
with <list of labels> 1
{label 1>,...,<label i>,;...,<{label n>

nﬁmnwam:n

To branch to one of several labels, depending on
the value of <expression>.

The value of <{expression> determines which label
in <list of labels> will be branched to.
For example, if the value is two, the second label
in <list of labels> will be branched to.

120 ON GETC-#4@ GOTO “A,"B,"C

D-BASIC 13




2.17 RESTORE

Format : RESTORE <linenumber>
RESTORE <label>
RESTORE

Valid t command/statement

Purpose : To allow DATA statements to be reread from a
specified line, or from the first DATA statement.

Remarks : If a RESTORE <linenumber> or RESTORE <label) is
executed, the next READ statement will read the
first item in the first DATA statement follawing
<linenumber> or <label>.

Example : ...
180 RESTORE "GRAPHDATA
20909 "GRAFPHDATA REM ——- DATA FOR DRAWING ——-
20012 DATA 10,100,0,40,...

2.18 RESUME

Format : RESUME
RESUME <linenumber >
RESUME <label>
RESUME NEXT

Valid : statement

Purpose : To resume program execution after an error
recovery procedure has been performed.

Remarks : Depending upon where execution is to resume,the
four formats shown above may be used.

RESUME : Execution resumes at the statement which
caused the error.

RESUME <linenumber)> : Execution resumes at
{linenumber X e

RESUME <label> : Execution resumes at <label)>
RESUME NEXT : Execution resumes at the statement
immediatly <following the one which caused the
error.

A RESUME statement that is not in an error trap
routine causes a "RESUME WITHCOUT ERROR" message to
be printed.

Example 3 10 ON ERROR GOTO "FAULT
SE2082 “"FAULT IF ERR=0Q
SR210 PRINT "RESTART":
STB20 END IF:RESUME NEXT

THIN HOME

CUME 1@

14 D-BASIC

2.19 REPEAT ... UNTIL ...

Format : REPEAT [statement(s)J:UNTIL <logical expression>
Valid : command/statement

Purpose : To execute a statement or series of statements in
a loop until a given condition is true.

Remarks : The loop statements are executed at least one
time.
If <logical expression> is false, they are
executed again.
If <logical expression> is true, program execution
continues at the statement following the UNTIL
statement.

REPEAT/UNTIL loops may be nested with mﬂvaA\CZA~F
FOR/NEXT and WHILE/WEND loops.

Example : ...
180 REPEAT A=GETC
11@ PRINT A
120 UNTIL A=ASC("S")

2.20 RUN <label>

Format : RUN <label >
Valid : command
Purpose : To start program execution at <label>.

Remarks ¢ To use this form of the RUN command, the program
in memory has to be compiled first.
If the program is not compiled <label)> will be
undefined and an "UNDEFINED LABEL" error will be
generated.

D-BASIC 13




CHAFTER 3

DBASIC ‘INTRINSIC® FUNCTIONS.

2.21 WHILE ... DO ... WEND

Only substantially new DBASIC functions are described in

Format : WHILE <logical expression> DO [statement(s)l:WEND
this chapter.
Valid : statement
. Each description is formatted as follows :
Purpose : To execute a statement or series of statements in
a loop as long as a given condition is true. Farmat ¢ Shows the correct format of the function.
Remarks : If <logical expression> is true, the loap Function : Tells what the result of the function will be.
statements are executed until the wend statement
is encountered. DBASIC then returns to the WHILE Remarks : Describes in detail how the function is used.
statement and checks <logical expression>. If it
is not true, execution resumes with the statement Example : Shows some examples that demonstrate the use of
following the WEND statement. the function.
WHILE/WEND loops may be nested with WHILE/WEND
loops, REPEAT/UNTIL loops and FOR/NEXT loops.
3.1 DEEK
Example : 1. 1@ PRINT "TYPE ANY KEY TO CONTINUE" R
20 WHILE GETC=@ DO WEND:REM WAIT FOR KEY PRESSED.
- Format ¢ DEEK({integer expression>)
-
12@ RESTORE "STRINGDATA:FLAG=1:I1=0 Function : Returns the two-byte value at address-location
11@ WHILE FLAG=1 DO READ As$(I) <integer expression>.
128 IF A$(I)="END" THEN FLAG=@
130 ELSE FLAG=1:END IF Remarks : The low-byte is taken from address—location
140 I=1+1:WEND {integer expression), the high-byte is taken from
o address—location <integer expression>+1.
. JH
1@8@ RESTORE "STRINGDATA: I=@:READ A$(I) Example : 1@ HEAP=#29B
118 WHILE A$(I)<>"END" DO I=I+1 2@ PRINT "THE HEAP STARTS AT ADDRESS #"3
128 READ A$(I) : WEND 3@ PRINT HEX$ (DEEK (HEAP))
2.22 FN =
3.2 DIM
Format : FN =<expression> —
Valid : statement Format ¢ DIM(Karray name)>,<integer expression))
Purpose : To end evaluation of a ‘user defined’' function and Function : Suppose the value of {integer expression> is n
to return <expression> as value. then the function DIM will return the value Dm
the n-th dimension of <array name>.
Remarks : <expression> has to be of the same type as the
‘user defined’ function where the FN = statement Remarks : If <integer expression> is less then 1  or
belongs to. <integer expression> is larger then the number of
A function definition can contain more than one the dimensions of <array name> a ‘NUMBER OUT OF
FN = gtatement to end evaluation. RANGE* error is returned.
Example 1 1@ FUNCTION LEFT3%(AS) Example : 1@ DIM A(10,4)
20 IF LEN(A$)<3I THEN FN =A$ 20 PRINT DIM(A,1),DIM(A,2)
30 ELSE FN=LEFT$(A%$,3) e
4@ END IF
30 5@ END FN

16 D-BASIC

122 PRINT LEFT3$("TEST") ,LEFTI$("AB")

D-BASIC 17




3.3 ERL 3.6 INTEGER . m

Format : ERL

Format : INTEGER({floating point expression>)
Function : Returns the linenumber in which an error occured.
Function : To convert a floating point expression to integer |

Remarks : An error-linenumber equal to zero (@) means it format.

was a direct-command mode error.
Remarks : There is a significant diffirence between the |

Example : 10 ON ERROR GOTO "TRAP INTEGER function and the INT function. |
28 ERROR 1@ The INTEGER function returns an integer value ,

—r while the INT function returns a floating point

1888 "TRAP PRINT ERL:RESUME NEXT value equal to the part of the argument at the

left side of the decimal point.

Note : See alsc appendix C. h
The INTEGER function can be usefull to convert |
expressions to the integer type before passing g
them as function parameters to a procedure or |
3.4 ERR user-defined functions. A
Example : 1@ PROCEDURE TEST FN Z W
Format 1 ERR _ 20 PRINT Z f
32 END PROC M
Function : Returns the error number. see )
18@ FOR I!=@.1 TO 1.0 STEP ©.1 i
Remarks : ERR is in the range [0,255]. 11@ TEST INTEGER(SIN(I!)#*2.8)
120 NEXT I!
Example : 1@ ON ERROR GOTO "TRAP
22 ERROR 5@
aes L]
1280 "TRAP PRINT ERR:RESUME NEXT
Note : See also appendix C
3.5 ERR% 3.7 ISTR$
Format t ERR$ Format : ISTR$(<integer expression>)
Function : Returns the identification of the DBASIC- _ Function : Returns & string representing the value of

extension which caused the error. {integer expression>.

Remarks : The ISTR$ function is familiar to the STR$
function.
The ISTR$ function however returns & string

of DBASIC without added °.@°.

Remarks : If the error was generated by a DBASIC statement
or command then ERR$ is empty.

Example : If you are working with the DCR-version
v2.1, and the DCR-driving package is on line then

typing : Example : 10 A=100000200
2@ PRINT ISTR$(A),STR$¥(A)
#REW 18008 will give the error message: e

DCR FILE NUMBER OUT OF RANGE
#PRINT ERR$ will give &
DCR

Note t See also appendix C, DU and E.

D-BASIC 19




3.8 IVAR

Format H

Function :

Remarks :

Example :

3.9 NDIM

Format H

Function :

Remarks @

Example :

3.18 REAL

Format 5

Function 2

Remarks @

Example

IVAR(Kinteger expression’)

Returns the integer value stored at memory-
location <integer expression>.

The IVAR function can be usefull to point into
an integer type array.

5 CLEAR 100022

1@ DIM A(102,10,10):L0ADA A "INTARR"

2@ FOR I=VARPTR(A(@,0,08)) TO VARPTR(A(10,12,1@))
STEP 4

3@ PRINT IVAR(I)

4@ NEXT I

NDIM(<Larray name>)

Returns the number of dimensions reserved for
<array name’.

The NDIM function could be used in procedures and
functions which contain array-parameters to test
the number of dimensions of the arrays passed.

i@ REM ——- ONE DIMENSION ARRAY SORT ——-
28 PROCEDURE SORT ARR AS$
3a IF NDIM(A$)<>1 THEN ERROR 120

4@ ELSE ...

122 "START ON ERROR GOTO "TRAP

20088 "TRAP IF ERR=10@ THEN PRINT "ONLY ONE
DIMENSION IS ALLOWED FOR SORTING"

20210 ELSE ...

REAL ({integer expression>)

Te convert an integer expression to floating
point.

function can be usefull to convert
ssions to the floating point type before
them as a function parameter to a

19 PROCEDURE 7
28 PRINT Z!
38 END PROC

1@8 TEST REAL (XMAX)

3.11 VAR

Format

Function
Remarks

Example

3.12 VARS$

Format

Function

Remar ks

Example

VAR (<integer expression>)

Returns the floating point value stored at memory
location <integer expression>

The VAR function can be usefull to point into a
floating point type array.

S CLEAR 100200
1@ DIM A!(1@,10,10):LOADA A! "FPTARR"

20 FOR I=VARPTR(A!(10,9,@)) TO VARPTR(A! (10,10,1@))

STEP 4
3@ PRINT VAR(I)
4@ NEXT

VAR$ (<integer expression))

Returns the string to which
<integer expression> points to.

memory—location

The VAR$ function can be usefull to point into
a string type array.

It is possible to sort a string type array by
just swapping the pointers to the strings.

S CLEAR 18028

1@ DIM A%$(1@0):L0ADA A$ "STRARR"

20 FOR I=VARPTR(A%$(Q)) TO VARPTR (A$(18@)) STEP 2
3@ PRINT VARS$(I)

4@ NEXT




CHAPTER 4

PERSSSEE————

PROCEDURES AND FUNCTIONS

In this chapter procedures and functions are explained in
more detail . Some examples will be helpfull in understan—
ding.

4.1 DECLARATION.

—————————

A procedure or function has to be declared somewhere in the
program. Although it is not nessecary, we recommand you to
declare them in the begin of the program, as in UCSD PASCAL.

Example : 18 DEF PROC HOME
2@ PRINT CHR$(12);
3@ END PROC

The procedure HOME, called as HOME, will clear the screen.
This very simple procedure could also be declared on one
line.

Example : 1@ PROCEDURE HOME: PRINT CHR$(12)3;:END PROC

Within a procedure or function declaration, other functions
or procedures can be declared.

Example : 1@ PROCEDURE PROMPT
2@ PROCEDURE HOME
3@ PRINT CHR$(12);
4@ END PROC
5@ HOME
6@ PRINT "DBASIC V2.1"
7@ END PROC

Procedure PROMPT, called as PROMPT, will clear the screen
and print the DBASIC V2.1 prompt in the upper-left corner.
Note that the code executed by procedure PROMPT concists of
line 5@ and &@, line 20 to 4@ is not executed.

In fact line 28 to 40 declare a ‘sub-procedure’ of the
procedure PROMPT.

22 D-BASIC

1ETERS.

£.2 VALUE PAR

You can pass four types of parameters to a procedure or
function. The first and simplest parameter—-type is the value
parameter.

Example : 1@ PROCEDURE AST I,dJd
20 WHILE I<>@ DO PRINT "#"
32 WHILE J<>@ DO PRINT ":"
4@ END PROC
58 "START A=4:B=3
&@ AST A+1,B
78 AST B8,6-3

Executing line 6@ will print five asterixs followed by five
colons, line 78 will print eigth asterixs followed by three
colons.

Example : 18 FUNCTION FAC! (N)

20 IF N=@ THEN FN=1.@

3@ ELSE FN=N#*FAC! (N-1)

4@ END IF

S@ END FN T

6@ FDR I=0 TO 1@:PRINT FAC! (N) s NEXT
Executing line 6@ will print @! to 1@!. (faculty)

Note that ¢ N!'= 1 if N=0
N#(N-1)[if N>O

Note also that the function FAC! is defined recursively.
It can also be defined as an iteration.

Example : 1@ FUNCTION FAC! (N):LOCAL I,T!:T!=1.0
20 IF N=@ THEN FN=1.0
3@ ELSE FOR I=1 TO N:T!=T!#I:NEXT ' FA =7/
4@ END IF ’
S@ END FN

D-BASIC 23




A number of mathematical o4 5 L Ere . r
Umbmunaw<cmnwwn:»mﬂmnvz 4rer:‘

Function: DBASIC equivalent:
SECANT SEC(X)=1/C0S(X)
COSECANT CSC(X)=1/8IN(X)
COTANGENT COT(X)=1/TAN(X)

INVERSE SINE
INVERSE COSINE
INVERSE SECANT

ARCSIN(X)=ATN(X/SAR (—X*X+1))

ARCCOS (X) =—ATN(X/SAR(-X#X+1) ) +1.5708
ARCSEC (X) =ATN(X/SAR (X#*X-1) )
+SGN(SGN(X)-1)*1.57@8

ARCCSC (X)=ATN(X/SER (X#X~1) )
+(SEN(X)-1)*1.57@8

ARCCOT (X)=ATN(X)+1.57@8
SINH(X)=(EXP(X)-EXP(-X))/2

COSH (X) =(EXP (X)) +EXP (-X)) /2
HYPERBOLIC TANGENT TANH (X) =EXP (=X) / (EXP (X) +EXP (—-X) ) #2+1
HYPERBOL.IC SECANT SECH (X) =2/ (EXP (X) +EXP (-X))
HYPERBOLIC COSECANT CSCH (X) =2/ (EXP(X)—-EXP (-X))
HYPERBOLIC COTANGENT COTH(X) =EXP (=X) / (EXP (X) ~EXP (—X) ) #2+1
INVERSE HYPERBOLIC

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLOC SINE
HYPERBOLIC COSINE

SINE ARCSINH (X)=LOG (X+SAR (X#X+1) )
INVERSE HYPERBOLIC

COSINE ARCOSH (X) =LOG (X+SAR (X*X~1) )
INVERSE HYPERBOLIC

TANGENT ARCTANH (X) =LOG( (1+X) / (1-X)) /2
INVERSE HYPERBOLIC

SECANT ARCSECH (X) =LOG ( (SAR (=X #*X+1) /X)
INVERSE HYPERBOLIC

COSECANT ARCCSCH (X)=LOG ( (SGN(X) *SAR (X#X+1) /X
INVERSE HYPERBOLIC

COTANGENT ARCCOTH(X)=LOG((X+1) / (X-1)) /2

Note that all variables are implicit floating point and that
X is a value parameter.

24 D-BASIC

o .

4.3 VARIARLE PARAMETERS,

A second type of parameter you can pass to a procedure or
function, is the variable parameter. .
Variable parameters allow you to transfer unsubscripted
variables to and from procedures or functions.

Example : 10 PROCEDURE SWAP VAR A$,B$
28 LOCAL HELPS$
3@ HELP$=A%$:A$=B$:B$=HELPS
480 END PROC

120 BEGIN$="BEGIN":EN$="END"
110 SWAP BEGINS$,ENS$
120 PRINT BEGINS$,EN$

The effect of the procedure call SWAP BEGIN$,EN$ will be
that the contents of variables BEGIN$ and EN$ will have been
‘swapped’. )
An easy way to understand how the procedure or function
will execute is, to substitute the variable parameters by
the variables in the caller.

In our example this will give :

20 LOCAL HELPS$
3@ HELP$=BEGIN$:BEGIN$=EN$:EN$=HELP$

Example : 18 PROCEDURE TESTSPEED VAR TIM:TIM=@
28 PRINT "TYPE A KEY AS QUICK AS YOU CAN"
3@ WHILE GETC=0 DO TIM=TIM+1:WEND
49 END PROC
120 TESTSPEED 1
118 PRINT "YOU WAITED";I;" WHILE/WEND LOOPS"

In this example Variable I is used only to recieve a value
from the procedure TESTSPEED.

D-BASILC 23




4.4 ARRAY PARAMETERS .»

Beside unsubscripted variables you can also transfer
complete arrays to a procedure or function.

Example : 1@ DEF FN MAX(ARR A):LOCAL I, MX
20 FOR I=@ TO DIM(A,1)
3@ IF AC(I)>MX THEN MX=A(I)

4@ END IF
S8 NEXT

68 FN =MX
78 END FN

188 PRINT "“THE MAXIMUM PRICE IS";MAX(PRICE())
121 PRINT "THE MAXIMUM TAX IS";MAX(TAX())

In this example PRICE and TAX are one-dimensional integer-
type arrays.

Note that the dimension of the arrays can be found with the
DIM function.

Note also that the arrays that pass to a procedure or
function have to be noted as <array name>().

Example : 18 PROCEDURE BSORT ARR A$

2@ DEF PROC SWAPPTR X,Y:LOCAL H

3@ H=DEEK(X):DOKE X,DEEK(Y):DOKE Y,H:END PROC

48 SFLAG=1

S@ WHILE SFLAG=1 DO SFLAG=@

&@ FOR I=VARPTR(A$(@)) TO VARPTR(DIM(A$,1)-2))
STEP 2

7@ IF VARS$(I)>VAR$(I+2) THEN SWAPPTR I,I+2:SFLAG=1

88 END IF

9@ WEND

182 END PROC

1828 BSORT NAMES ()

This is an example of a sort-routine for one-dimensional
string—-type arrays.

Note that only the pointers to the strings are reordened.
Note also that procedure BSORT is a very unefficient sort-
routine, because in the worst case it scans n times the
complete array with n equal to the length of the array.

24 D-BASIC

4.5 FUNCTION PARAMETERS .

A last type of parameter is the function parameter.

Example : 10 FUNCTION INTEG! (VAR X! FN Z!)sLOCAL TOT!
2@ FOR X'!=-1.8 TO 1.0 STEP @.1
30 TOT!=TOT!+@.1%Z!

40 NEXT
5@ FN =TOT!
6@ END FN

128 PRINT INTEG!'(X!,SIN(X!))
11@ PRINT INTEG!(Y!,COS(Y!))

The function INTEG'!' calculates appraoximately the integral of
a mathematical function in the interval [-1.0,1.01. (The
surface between the function and the X-axis.)

Note that the argument (X!,Y!) of the function (SIN(X!)
COS(X!).) is transferred as a variable parameter. ’




4.6 LOCAL AND GLOBAL VARIABLES.

The KmWMWU~mm in a procedure or function heading used to
specifie value, variable, array or function parameters will
be local variables, i.e. : after the procedure or function
call has been executed these variables will keep the value
they had before the procedure or function call.

Example : 1@ PROCEDURE DUMMY I
20 PRINT I:1=0
3@ END PROC
100 I=10
112 DUMMY 100
120 PRINT 1

In line 120 I will still have the value 1@ after the
procedure call DUMMY 100 in line 110@.

However there is one exception on this rule.
When you call a procedure or function with variables,
exactly the same as in the procedure or function heading to

specifie variable and/or array parameters, these variables
will be global.

Example : 1@ PROCEDURE DUMMY T VAL I
28 PRINT 1:1=0
38 END PROC
100 I=10@
118 DUMMY I
120 PRINT I

In line 1292 I will be @, because it is considerd global to
the procedure.

Also with the LOCAL statement vyou can define 1local
variables.

Example : 1@ PROCEDURE TEST:LOCAL J
2@ PRINT J:J=10
38 END PROC
i@ J=1
11@ TEST
120 PRINT J

In line 120 J will still have the value 1.

All other variables will be global to procedure or function.

‘Example 3 1@ PROCEDURE TEST
28 J=10
3@ END PROC
100 J=3
118 TEST
120 PRINT J

Due to the procedure call TEST, J will be changed to 18.

AFFPENZIX A

Summary of error—numbers and error-messagos.

Error—
number Error-message.

"] NEXT WITHOUT FGR
A variable in a NEXT stament does not corrospond to
any previocusly executed, unmatched FOR statement.

1 RETURN WITHOUT GOSUB
A RETURN statement is encountered for which there is
no previous, unmatched GOSUB statement.

2 DUT OF DATA
A RCAD statemznt is executed when there are no DATA
statements with unread data remaining in the program.

3 COVERFLCW
The result of a calculation is to large to be
represented in DBASIC's number format. If underflow
cccurs, the result is zero and execution continues
without an error.

4 UNDEFINED LINENUMEER
The linenumber specified in this statement does not
exist.

S SUBZCRIPT ERRCR

An array element is referenced either with a
subscript that is cutside the dimensions of the array
or with the wrong number of subscripts.

) DIVISICGN BY ZERO
A division by zero is encountered in an expression.

7 OUT OF STRING EFACE B
String variables have caused CBASIC to exceed the
amount of free memory remaining in the heap.

8 STRING 0 LONS
An att t is made to create a string more than 235
characters lcnge.

9 NUMEEZR GF RANEE

Cne of tha arguments of the statement is not in the
valid range.
ie INVALID NUMIZR
he paramcter given to the VALO function was not a
valid flicating point number.

11 LOADING ERROR @ (cassatte)
Block length checksum error.

12 LOADING ERRIR 1 (cascette)
Insufficient memory.

D-BASIC 29
28 D-BASIC




13

14

15

16

17

18

19

28

21

22

23

24

25

26

27

28

LOADING ERROR 2 (cassette)
Block checksum error.

LOADING ERROR 3 (cassette)
Data drop-out error.

UNDEFINED ARRAY
An array has not been dimensioned before.

COLOUR NOT AVAILABLE
The colour is not available in a 4-color mode.

OFF SCREEN
The X—- and Y- coordinates are not in the range
[@,XMAX1 and [@,YMAX].

ERROR LINE RUN
An attempt has been made to execute an erronneous

line.

OUT OF MEMORY
No free memory left.

TYPE MISMATCH
A string variable name is assigned to a numeric
value or vice versa.

LINE NUMBER OUT OF RANGE
The linenumber is out of the range [1-655331.

STACK OVERFLOW
No stack-memory left. Can occur by having to many
FOR-NEXT loops nested or to many levels of GOSUB.

SYNTAX ERROR

A line contains some incorrect sequence of characters
(such as unmatched parenthesis, misspelled command or
statement, incorrect punctuation, etc.).

COMMAND INVALID

A statement that is illegal in direct mode is entered
as a direct mode command or a command that is illegal
in a program is entered in a program line.

CANT * CONT
No continue of the program is possible.

LINE TO COMPLEX
The total 1length of the compiled line would exceed

128 bytes.

OUT OF MEMORY
See DBASIC error 19.

INCORRECT PARAMETER NUMBER

The number of parameters in the procedure— or

function-caller does not correspond to the number of

parameters in the procedure— or function defenition.

30 D-BASIC

29

30

31

32

33

34

35

36

37

38

39

40

41

42

INVALID VARIABLE PARAMETER
The parameter in the procedure—- or function-caller is
not an unsubscripted variable reference.

INVALID ARRAY PARAMETER
The parameter in the procedure- or function-caller is
not an array reference.

INVALID FUNCTION PARAMETER
The parameter in the procedure- or function-caller is
a variable reference.

OFFSET OUT . OF RANGE

Internal DBASIC error. This error cannot occur unless
in the compiled code, procedures and functions are
located behind 32k of the textbuffer.

CAN’'T CLEAR

A CLEAR is not allowed because no relocation of the
program is possible anymore.

This error will occur when trying to clear in a
subroutine , a FOR-NEXT loop or a PROCEDURE.

INVALID EXTENSION

‘A DBASIC extension (see appendix D) was not found or

in bad format.

UNDEFINED PROCEDURE

The called procedure has not been defined or, when
code to define the procedure has been included in the
program the program has not been compiled.

UNDEFINED LABEL
The 1label refered to in the statement has not been
defined or the program has not been compiled.

WEND WITHOUT WHILE
A WEND statement is encountered for which there is no
previous, unmatched WHILE statement.

UNTIL WITHOUT REPEAT
A UNTIL statement is encountered for which there is
no previous, unmatched REPEAT statement.

MISSING ELSE

A IF statement is encountered without a matching
ELSE statement.

MISSING END IF

A ELSE or IF statement is encountered without a
matching END IF statement.

MISSING WEND

A WHILE statement is encountered without a matching
WEND statement.

MISSING UNTIL

A REPEAT statement is encountered without a matching
UNTIL statement,

D-BASIC 31




43

44

45

44

47

48

49

=1

51

52

S4

55

32 D-BASIC

MISSING FUNCTION TERMINATOR
A function defenition is encountered without at
least one FN= statement.

MISSING END FN
A function defenition is encountered
matching END FN statement.

without a

MISSING END PROC
A procedure defenition is encountered without a
matching END PROC

ELSE WITHOUT IF
A ELSE statement is encountered for which there is no
previous, unmatched IF statement.

END IF WITHOUT IF
A END IF statement is encountered for which there is
no previous, unmatched IF statement.

FUNCTION TERMINATOR WITHOUT FUNCTION
A FN = statement is encountered for which there is no
previous, unmatched function defenition.

END FN WITHOUT FUNCTION
A END FN statement is encountered for which there is
no previous, unmatched function defenition.

END PROC WITHOUT PROCEDURE
A END PROC statement is encountered for which there
is no previous, unmatched procedure defenition.

FUNCTION TYPE MISMATCH

The expression type in the FN= statement is different
from the type of the defined function or, the
expression type in the function-caller does not
correspond to the type of the function-parameter in
the function defenition.

UNDEFINED COMMAND
The appropriate DBASIC extension to which the command
helongs is not in memory.

SYMBOL IN USE.

The symbol used to define a label or procedure is
already used for definition of a label or procedure.
(duplicate definition)

INVALID USE OF FUNCTION

A functicn call is not allowed as argument of the
specific function, usualy only & variable reference
is allowed. Ex. : VARPTR(FAC%(N)) with FACZ(N) a
‘user defined’ function will generate the error.

RESUME WITHOUT ERROR
A RESUME statement is encountered without a previous
occurance of an error.

AFPENDIX B

Summary of compile-time errors

Note

For the exact meaning of the error—-message refer to
APPENDIX A.

1. Encoding errors : errors detected during encoding of the

edit-buffer.

Error

code

20

21

23

24

26

27

Error message

TYPE MISMATCH

LINE NUMBER OUT OF RANGE
SYNTAX ERROR

COMMAND INVALID

LINE TOO COMPLEX

OUT OF MEMORY

2. Compilation errors : errors detected during compilation.

(See COMPILE)

37

38

39

40

41

42

43

44

45

46

47

49

S0

352

S3

WEND WITHOUT WHILE

UNTIL WITHOUT REPEAT

MISSING ELSE

MISSING END IF

MISSING WEND

MISSING UNTIL

MISSING FUNCTION TERMINATOR
MISSING END FN

MISSING END PROC

ELSE WITHOUT IF

END IF WITHOUT IF

END FUNCTION WITHOUT FUNCTION
END PROCEDURE WITHOUT PROCEDURE
UNDEFINED COMMAND

SYMBOL IN USE

D-BASIC 33




APFPENDIX C

Error reporting

DBASIC has extended error reporting possibilities.

Unless you did forsee an error trap routine, in runtime
DBASIC will report known error—codes as shown in appendix
A, eventually completed whith the message ‘IN LINE nnnnn’
during program execution.

Compilation errors will be also reported with a ‘IN LINE
nnnnn° message.

For error codes 37,38 and 46 to S3 nnnnn will give you the
number of the line where the error has been detected.
However for error codes 39 to 45 (MISS5ING ... errors)
nnnnn will give you the number of the line in which a
statement has been discovered, for which a neccessary
matching statement could not be found.

ex. * The error message 'MISSING WEND IN LINE 188’ means
that no matching WEND statement could be found for
the WHILE statement in line 100.

Untrapped user—defined error—codes will be reported as :
ERROR nnn LIN LINE nnnnnl’

Ex. @ #ERROR 1020
ERROR 180

Besides DBASIC error-reporting, there is also an DBASIC-
EXTENSION error-reporting.

Thus extensions, like the Memocom MDCR driving package,
can have their own error—codes and error-messages.

Ex. 3 - The statement °'DCR 18' will generate the error-—
message °‘DCR DRIVE NUMBER OUT OF RANGE’
-~ The statement ‘SKIP A%+1" with AZL~1 or A>255
will generate °‘DCR FILE NUMBER OUT OF RANGE’.
Etec o..

Sme also appendix E : Memocom MDCR driving extension.

When DBASIC exteznsions do not forsee special error—
reporting routines, the errors will be reported as :

‘Kextension name > ERROR nnn”’

34 D-BASIC

For error-evaluation in er
‘implicit-defined’ functions
user.

1.The ‘ERR’ function gives the
occured error.

Ex.  If ‘ERR=23° then the
‘SYNTAX ERROR’.

2.The 'ERL‘’ function gives you
which the error occured.

Ex. : If 'ERL=1080°' then the
If ‘ERL=0° then the err

3.The ‘ERR$’ function gives
EXTENSION which generated the

EX : If °'ERR$="DCR"’ then
generated the error.

if ‘ERR$="""’ (null-str
error or a user defined
v2.1)

ror—trap routines three
are to the disposal of the

error-code of the last

last occured error was a

the number of the line in
error occured in line 1000.
or occured in command mode.

you the name of the DBASIC-
error.

the DCR driving extension

ing) then it is a DBASIC-
error. (‘ERR>55° for DBASIC

D-BASIC 33




APPENDIX D - $DELETE

$SYTEM EXTENSION Format : $DELETE <string expression>

1. Description Purpose : To delete a DBASIC extension.

$SYSTEM is a DBASIC extension, designed to extend DBASIC Remarks : This command will search in memory for the
with other extensions and/or delete from DBASIC the extension with name  equal to <string

expression>. If the extension is in memory, the

extensions which are not needed anymore.
extension command—-table will be masked ocut and

Extending DBASIC means : loading an extension-file ($-type), if the extension is located just below the Heap,
relocating the runtime-code, linking the extensions command- then the amount of memory occopied by the
table to DBASIC and updating the BASIC-pointers. (Heap etc.) extension is released and BASIC-pointers are

updated. $DELETE will let you know if everyting
Deleting from DBASIC means : masking out the extensions , is done correctly by printing the message

‘DONE’. If no extension with the name <string
expression> could be found then $DELETE just
prints a carriage return.

commnand—table and eventually releasing the memory occupied
by the location if it is located just below the Heap.

— Note : - The DBASIC program currently in memory will not
be destroyed by $EXTEND or $DELETE, however if
it was compiled, you will have to compile it

| again.

- It is possible to delete the $SYSTEM-extension
by giving the command : $DELETE "$SYSTEM"
This gives you the smallest DBASIC-code and the
largest amount of program-space. However you
loose the possibility to use extra commands.

2, COMMANDS

$SYSTEM contains two commands @
— $EXTEND

Format : $EXTEND <string expression>

Purpose : To extend DBASIC,

Remarks : This command Ilooks for the extension file with
name equal to <string expression> and load it
into memory starting at the Heap. The command
table will be linked to DBASIC and the runtime-—

code will be relocated.

Example 3 $EXTEND “DCR" will 1load and relocate the DCR
driving extension.

36 D-BASIC D-BASIC 37




APPENDIX E

THE MEMOCOM-MDCR DRIVING PACKAGE

The Memocom—MDCR driving package is a DBASIC-extension.
($DCR file on DCR version of DBASIC V2.1)

The purpose of this extension is to integrate-the DCR
commands into DBASIC, and to forsee a correct error—
reporting.

All the commands of the DCR-extension can be used both in
program and direct-command mode.

Between the command and <integer expression> must be at
least one space.

1. DCR

Format : DCR [<integer expression>]

Purpose : Selects DCR-drive <{integer expression’.

Remarks : If <integer expression> is not in the range [8,31]
a ‘DCR DRIVE NUMBER OUT OF RANGE® error will be
generated.

The default drive is @.

Example : #FOR I=0 TO 3:DCR I:L00K:NEXT

2. CAS

Format : CAS [<integer expression>l]

e

Purpose Selects audio-cassette <integer expression>.

Remarks : If <integer expression> is not in the range [@,31]
a ‘DCR DRIVE NUMBER OUT OF RANGE® error will be
generated.

The default drive is 1.

Example : #CAS

3. REW

Format @ REW [<integer expression>]

Purpose : To rewind the current DCR drive {integer

expression> files.

Remarks s If <integer expression> is out of the range
[@8,255] a ‘DCR FILE NUMBER OUT OF RANGE' error is
generated.

The default is rewinding to the beginning of the
tape.

Example 2 18 DCR:REW 100

38 D-BASIC

4., SHIF

—

Format

Purpose

Example

S. LOOK

Format

Purpose

6. VER

Format

Purpose

7. DEL

Format

Purpose

8. LAST

Format

Purpose

SKIP [<Kinteger expression>]

To skip <integer expression> files on the current
DCR drive.

If <integer expression> is out of the range
[@,2551 a ‘DCR FILE NUMBER OUT OF RANGE® error is
generated.

The default is skipping to the end of the tape.

SKIP 15+1

LOOK

To display the type and name of the next file on
the current DCR drive.

VER

To verify the previous file on the current DCR
drive.

DEL

To delete the next file s on the current DCR
drive.

LAST

To specifie the previous file on the current DCR
drive as the last file on the tape.

D-BASIC 39




ERROR REPORTING

If the DCR-extension generates an error the ERR$ ‘intrinsic’
function is set to ‘DCR’.

The DCR-extension knows eigth error-codes 1

Error ERROR MESSAGE
number Meaning of the error.

1 DCR END OF TAPE ERROR
During writing of a file the end of tape was reached.

2 DCR DOOR OPEN ERROR
During writing of a file the cassette-door has been
opened.

3 DCR BLOCK LENGTH CHECKSUM ERROR
Cfr. ‘LOADING ERROR @° on audio-cassette.

4 DCR INSUFFICIENT MEMORY
There is not enough free memory to load the file.
Cfr. °‘LOADING ERROR 1’ on audio-cassette.

S DCR BLOCK CHECKSUM ERROR
Cfr. ‘LOADING ERROR 2° on audio-cassette.

& DCR DATA DROFP OUT ERROR
Cfr. 'LOADING ERROR 3° on audio—cassette.

7 DCR DRIVE NUMBER OUT OF RANGE
The drive number specified in the DCR or CAS
statement was not in the range [8,31.

=] DCR FILE NUMBER OUT OF RANGE

The file number specified in the REW or SKIP
statement was not in the range [8,2551].

49 D-BASIC




INTRODUCTION
HOW TO READ THIS MANUAL

CHAPTER 1

GENERAL INFORMATION ABOUT DBASIC V2.1
1.1 INITIALISATION
1.2 OPERATION-MODES
1.3 PROGRAM FORMAT
1.3.1 LABELS

1.4 ARRAYS

1.5 EXPRESSIONS

1.6 ERROR TRAPPING
1.7 COMPILATION

1.8 PROTECTION

1.9 IMPLICIT INTEGER

CHAPTER 2
DBASIC COMMANDS AND STATEMENTS -
FORMAT NOTATION
2.1 BREAK
COMPILE
CONTINUE
DEF FN / FUNCTION
DEF PROC / PROCEDURE
LOCAL
DOKE
‘ERROR
GOSUB <label>
G60TO <label>
IF ... THEN ... ELSE ... END IF
IF ... GOTO <label>
ON BREAK GOTO
ON ERROR GOTO .
... BOSUB <list of labels>
GOTO <list of labels>

QIODBNOCOCAAUU DAUWUUNNNNNN

.es UNTIL ...
RUN <label>
WHILE ... DO ... WEND
FN =

CHAPTER 3
DBASIC ‘INTRINSIC FUNCTIONS®
3.1 DEEK ‘
3.2 DIM
ERL
ERR
ERR$
INTEGER
ISTR$
IVAR

3.12 VARS$




