
.:

w •

•
'

J

DAI FLOPPY DISK DRIVE CONTENTS

1. INTRCDUCTION .

2. POWER-ON SEQUENCE

3. FILE REFERENCE

3.1 · Filename
3.2 Extension
3.3 Diskunit
3.4 Examples
3.5 Special Ceses: Automatic extension generation

3.5.l
3.5.2
3.5.3
3.5.4
3.5.5

in BASIC and UTILITY connand
Basic File
Binary File
Floating-point array file
Integer-array file
String aray file

4. THE DISK OPERATING SYSTEM (DOS)

4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.J.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.12
4.1.13
4.1.14

4.1.15
4.1.16
4.1.17
4 .1.18
4.1.19
4.1.20

DOS Coanands (V 2.0)
ASSIGN
BACKUP
AUTO
COMPACT
COPY
CREATE
DELETE
DIR
DLOAD
DSAVE
!DISK
OPENI
PROTECT
RECOVER

- Assign Peripherals

REMOTE
LOCAL
RENAME
RESETD
TINYDOS -
VERIFY

Produce a Backup Diskette Copy
Automatic Line Nunbering
Coaipact Data on Backup Diskette
Copy a File
Create a New File
Delete a File
Display Diskette Directory
Load e Binary File into Memory
Save e Binary File on Diskette
Initialize Diskette
Open File for Input
Write-protect a File
Recover a Deleted File or
Unprotect a Protected File
Automatic Motor Control
Close Audio Cassette Relay
Rename e File
Reset Diskette Controller
Shortens DOS
Verify Data on a Diskette

'

4.3 Special DOS Feature (V 2.0)

5. INCLUDING DOS COl-t<ANDS IN BASIC PROGRAMS

6. DOS COl+{AND TABLE STRUCTURE .

7. RAH HEHORY MAP

8. ASCII INPUT AND OUTPUT fIL[S

9.

10.

ll.

13.

8.1 ASCII input files
8.2 ASCII output files

MERGING Of PROGRAMS

9.1 Introduction
9.2 Example

MASTERDOS ROUTINES

10.1 Different Routines
10.2 Example in Utility Mode

SPECIAL RAH LOCATIONS

11-1 Branch Vector
11.2 Print Output
11.3 Print Input

DOS ERRORS

13.1
13.1.l
13.1.2
13.1.3
13-1.4
13.1-5

13.2
13.3
13.4

DOS Errors Codes and Messages
Connand Syntax Errors
Error Code Generation
Error Codes Generated by Slave DOS
Error Codes Generated by Hester DOS
Hardware Error Codes Sent Vie Slave DOS

Loading Errors (BASIC)
Other Errors
Error Handling

14. STANDARD SYSTEM DISKETTE: OSK~ PCD V 2.0
(+ AZERTY format)

DAI FLOPPY DISK DRIVE MANUAL

I. INTRODUCTION

This manual describes the start procedure end the DOS com
mands to help the user to use the BASIC end DOS operating
system with the DAI Computer.

The DAI Computer communicates with the Floppy Disk System
via a parallel bus corresponding to the DCE-BUS, via a flat
cable.

The Disk System includes a power supply, an intelligent
controller, two mini-floppy disk drives (BOK bytes capacity
each) end ell necessary read/write electronics.

Also, a disk operating system is build-in which can handle
commands and errors. A system disk must be available for
use.

At power on (or reset) the DAI Computer verifies ihe pre
sence (or not) of the disk system, end subsequently initia
lizes for disks or cassette. The disk initialization
involves loading of a disk operating system from the master
disk (in drive 0) into the DC RAM.

Once the disk operating system is loaded, any character from
the keyboard will start normal operation of the DC (as for
the cassette configuration).

The standard commands SAVE, LOAD, SAVEA, LOADA of BASIC and
RW commends of the UTILITY, are all usable with disks
exactly as for cassettes when drive O is in use.

2. POWER-ON SEQUENCE

Place the dual disk drive at the right side of the DAI
computer: the left drive is drive O and the drive on the
right is drivel. It is important to identify them
correctly.

I • Connect the disk system via the flat cable to the
DCE-BUS connector·at the back of the Computer.

Ensure that the doors of both diskette drives ere open
and turn on the disk system.

III. Insert the system diskette into drive O and close the
door,

;

IV. Turn on power to the Computer (press RESET if neces
sary)

' The following sequence of steps will then be executed
automatically.

I. The bootstrap file $DKBDDTS on the ~ystem diskette in
drive O will be loaded into the stack RAM memory from
address FBOOH upwards. The bootstrap routine will occupy
approximately 200 bytes. Control will then be passed to its
entry point at address FBOOH,

This bootstrap file has a special format and contains
pure binary data, without the usual file-definition para
meters which specify the start, end and entry addresses.
This bootstrap routine is used to load and execute the
diskette file $MSTRDDS, which normally contains DOS.

II. The file $MSTRDDS on the system diskette in drive O
will then be loaded and executed. This is a normal binary
file which is approximately SK bytes in length, and contains
the full DOS. The binary data on this file is preceded by
the three usual file-definition parameters indicating the
start, end a~d entry addresses.

NOTE : This file can also be a user program in the correct
binary format. In this case, it will be automatically loaded
and executed on power-on or system reset.

III. The binary file $USER.BIN will then be searched on the
system diskette.

If no such file is found, execution will proceed to step IV.

If the file is found, it will be opened for input and loaded
into memory as specified in the file-definition parameters.
Any loading error will cause execution to return to the
normal BASIC initialisation sequence (i.e. wait for any key
input, and then display the BASIC sign-on message and prompt
character).

If the entry address specified in the file-definition
parameters is equal to FFFFH (i.e. no entry address),
execution will proceed to step IV.

;:

If a valid entry address is specified in the file-definition
parameters (i.e. any value except FFFFH), the loaded program
will be called as a machine code subroutine with that entry
address. Upon executing the Return instruction corle at the
end of the routine, the contents of the zero flag in the CPU
flag register will be tested. If this flag is set (:1)
execution will proceed to step IV; if it is clear (:0)
execution will return to the normal BASIC initialisation
sequence (i.e. wait for any key input, and then display the
BASIC sign-on message and prompt character). The zero flag
should therefore be set or cleared by the program stored in
$USER.BIN to indicate the presence or absence of a BASIC
program for automatic loading followed by running (step IV).

IV. The BASIC program file $USER.BAS will then be searched
on the system diskette.

If no such file is found, execution will return to the
normal BASIC initialisation sequence (wait for any key input
etc.)

If the file is found, it will be opened for input and loRrled
into memory as a BASIC program (semi-compiled code) plus
symbol table, and then executed (i.e. RUN).

3. FILE REFERENCES

Each file is known to DOS by its "file reference". The file
reference consists of three items of information which serve
to identify a file uniquely.

They are :

* Filename
* Extension
* Diskunit

The standard format of a complete file reference is

Filename. extension: diskunit

3.1 Filename

The fileneme is a name that is given to identify th~ file
and must always be included in the file reference. It is
made by l to 8 following characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

I II // $ % & I () +- * / ; < = > ?

DOS command words (e.g. BACKUP, COPY, !DISK, etc) must not
be used as file names.

•

3.2 Extension

The extension is an optional group of three of the above
characters which serves to identify the type of information
contained in the file. It immediately follows the filename,
being separated from the latter only by a single point. No
other characters or spaces ere allowed in between filename
end extension. If en extension is not specified, DOS assumes
three space characters as the extension.

Although all data in files consist of some s e quence of
binary digits, these bits are interpreted in different ways
according to the type and usage of the file.

DOS does not interprete the extension in a filereference in
any way. It simply uses the extension as an integral part of
the filename, to identify the file. The user is therefore
free to use extensions of his own choice.

3.3 DISKUNIT

The diskunit is also optional, and specifies on which of the
two drives the file is located. It consists of a single
digit, 0 or 1, preceeded by a colon. It immediately follows
the extension, if one exists, or _otherwise the filename. No
other characters or spaces may precede the diskunit. If a
diskunit is not specified, DOS assumes zero and the file is
assumed to be on the diskette in drive O.

3.4 EXAMPLES

Examples of filereferences are given below:

FILE

FILE.
FILE.: □
FILE: □

FILES-1.BAS

refers to a file with the filename FILE.
DOS assumes an extension of three spaces, and
drive o.

)
) Functionally identical to filereference in
) previous example

refers to a file with filename FILES-1 and
extension BAS, containing semi-compiled code.
It is assumed to be in drive 0

FILES-1.BAS:l Same file as before, but on the diskette in
drive 1

3.5 BASIC FILE

Basic arid utility commands which write files to diskette
automatically generate implicit extension names.

3.5.1 BASIC FILE

FILENAME.BAS

Example:

A Basic program file (containing semi-com
piled code), with the program code followed
by symbol table
Generated by the BASIC command SAVE; can be
read back via the BASIC command LOAD

*SAVE "EXAM:0 11 Save the basic program currently in memory
onto the diskette in drive Oas file EXAM.BAS

*LOAD "EXAM: □" This basic command will load the BASIC
program file EXAM.BAS from drive O into
system memory

3.5.2 BINARY FILE

FILENAME.BIN : A. binary file preceded by file definition
parameters (see DSAVE command)
[ach file definition parameter is a 16-bit
address in low-high order. The binary file
will be generated by Utility command Wand
can be read back via the Utility commanc: R.
If the execution address in the file- defi
nition parameters is equal to the FFFFH,
this will be interepreted as no-entry. The
utility command W will produce execution
address= FFFFH; if a valid entry address is
desired, the DOS command DSAVE can be used.
The utility command R will read such a file
and automatically enter it at the execution
address if it is not equal to FFFFH (only if
no address offset is specified in the R
command).
(See sections 7.3.11 and 7.3.12 in DAI
Computer Manual).

3.5.3 FLOATING-POINT ARRAY FILE

FILENAME.FPT

Example * SAVEA Al "EXAMP"
Save the floating point array Al on disk as
file EXAMP.FPT

* LDADA A! "EXAMP"
Load the file EX AMP .F PT in the floating
point array A!

•

J.5.4 INTEGER ARRAY FILE

, FILENAME. INT

Example * SAVEA A% "TEST"
Save the integer array A% on disk as file
TEST.INT

* LOADA A% "TEST"
Load the file TEST.INT in the integer array
A%

J.5.5 STRING ARRAY FILE

FI LENAME. S TR

Example * SAVEA A$ "CODE"
Save the string array A$ on disk as file
CODE.STR

* LOADA A$ "CODE"
Load the file CODE.STR in the string array
A$

Since the above extension names are automatically generated
by the relevant Utility or BASIC commands, file references
specified in such commands must not include these exten
sions. Subsequent Utility or BASIC commands used to load
such files must also use file refences excluding the exten
sions.

However, subsequent DOS commands accessing such files ~ust
include the correct extension name in the file reference.

Example

SAVE "PROGRAM:l" This BASIC command will copy the BASIC
program currently in memory ontJ the
diskette in drive 1, as file PROGRAM.BAS.

LOAD "PROGRAM:l" This BASIC command will load the BASIC
program file PROGRAM.BAS from the diskette
in drivel into system memory.

If, for example, this file is to be deleted via the DOS
command DELETE, the file reference must include the exten
sion, as shown below:

DELETE PROGRAM.BAS:l

4. THE DISK OPERATING SYSTEM (005)

DOS performs all diskette data and file management tasks for
the user, and takes care of the physical position~ng of data
on the diskettes.

The DOS resides on the system diskette, and is loaded for
execution on the bottom of system RAM memory (see memory map
section 7).

The Commands

RESETD COPY LOCAL CREATE IDISK RENAME

DIR BACKUP REHOTE: DELETE RECOVER VERIFIY

TINYDOS COMPACT AUTO VERIFY PROTECT

SAVE LOAD OPENI ASSIGN DISK

SAVEA LOADA ASSIGN CASSETTE

DSAVE DLOAD ASSIGN SCRITN

ASSIGN PRINTER

ASSIGN KEYBOARD

ASSIGN R5232 .

DOS commands can be entered via the keyboard, in response to
the usual BASIC prompt. They cannot be entered from the
utility or from the Editor.

Sue a DOS command must be the first one on that line.
Anything that follows a DOS command and its parameters on
the same line will be ignored.

4.1 DOS COMMANDS (V 2.0)

4.1.1 ASSIGN - Assign Peripherals

FORMATS

* ASSIGN DISK Assign diskette for read and write
operations associated with
LOAD,LOADA,SAVE,SAVEA,R, W commands

..

Once a file is created with a certain file length it is not
possible to extend its length. However, extending the length
of Bn existing file cBn be indirectly Bchieved by creBting B
new file with a larger file length, and copying the first
_file to it.

Examples:

* CREATE FILEY:l B

* COPY FILEX:l FILEY:l

* DELETE FILEX:l

* RENAME FILEY:l FILEX:l

Create a new file, 8 sectors
in length

Copy FILEX to FILEY

Delete FILEX

Rename FILEY as FILEX

Important Note The diskette containing the specified
file must have its write-protect notch
uncovered.

4.1.7 DELETE - Delete Files

FORMAT : * DELETE filereference filereference2 •••

The DELETE, command removes the specified files "filere
ference '·', "fi leref erence2", ••• from the corresponding dis
kette directory files. The deleted filename can then be used
in ·the creation of new files. When a file is deleted, only
the directory entry is flagged as deleted and the data in
the file continues to remain on the diskette. The sectors
used by the deleted files will not be released for re-al
locations to new files until all the accessible files on the
diskette are compacted into one block via the COMPACT com
mand. Until a diskette is compacted, all deleted files can
be restored by using the RECOVER command with the correct
file reference.

Files that have been write-protected via the PROTECT command
cannot be deleted. Attempting to delete such a write-protec
ted file will produce a DOS error message with code 07
indicating that the file is write-protected.

One or more filereferences can be specified in the DELETE
command.

Up to 15 file references can be specif{ed in a single DELETE
command, provided the total number of characters in the
command (including spaces) does not exceed the input buffer
length of 80 characters.

Examples

* DELETE TEST.SRC:l PROG TEST.OBJ:l

Important Note

Delete files TEST.SRC and TEST.OBJ
from diskette in drive 11 and delete
file PROG from diskette in drive O

The diskettes containing the specified
files must have their write-protect
notches uncovered

4.1.8 DIR - Display Diskette Directory:

FORMAT * DIR Diskunit

Each diskette has a directory file containing information
about all files on that diskette. The directory entry for
each file contains the filename, extension, protect mode and
the length of the file. The DIR command displays on the
console directory information relating to all files present
on the diskette loaded into drive "diskunit" (0 or 1). The
number of free sectors on the diskette available for al
location to new files is also displayed.

File extensions are listed under heading EXT. Files created
without extension names are given extensions of three
spaces. The protect mode foi each file is given under the
heading ATR. A 'W I in this column indicates that the file
has been write and delete protected via the PROTECT command.
Write protection of all the files on the diskette by the
covering of the write-protect notch will not be indicated in
the directory listing.

A 'N' in the ATR column indicates a non-protected file. All
18 sectors on track Oare reserved for the directory file
$DKDIR. User files start from track l sector 1. The number
of sectors allocated to each file is given as a decimal
number in the last column. The number of free sectors
available on the diskette is displayed as a decimal number
at the end.

Example: 4-0IRl Display the directory of diskette
in drive 1

4.1.9 DLOAD - Load a Binary File into Memory:

FORMAT • DLOAD filereference

This command loads the file 'filereference' containing
binary data written via the DSAVE command into memory. The
file is loaded st~rting at the address that was specified
when the data was written to the fil~ via the DSAVE command.
The file 'filereference' will be opened and closed auto
matically by the DLOAD command.

Example :

The file TESTPROG.BIN:l contains a binary program written
to it by the command DSAVE TESTPRG.BIN:l 100 lCOO Al □

(start-address= lOOH; end-address= lCOOH;
entry-address= AlOH).

This command DLOAD TESTPRSG.BIN:l will load the program file
TESTPRG.BIN:1 into memory starting at address lOOH, and
extending up to address lCOOH.

4.1.10 DSAVE - Save a Binary File on Diskette:

FORMAT * DSAVE filereference startadr endadr entryadr

This command can be used to save a binary program resident
in - memory starting at low address 'startadr' and ending at
high address 'endadr', onto an existing or non-existing
diskette file 'filereference'.

If the program entry-point address 'entryadr' is omitted, it
will be assumed to be equal to 'startadr'. The three address
parameters 'startadr', 'endadr' and 'entryadr' must be given
in hexadecimal, They will be written to the file at the
start of it, to be used subsequently when re-loading the
file into memory and executed.

The file 'filereference' will be opened and closed auto
matically, If the file 'filereference' has been created
using the CREATE command with the file length unspecified
i.e. equal to all free sectors on that diskette, it will be
closed and its length adjusted to the number of sectors
actually used.

Before writing the data to the file 'filereference' the
DSAVE command writes to it the parameter 'startadr' followed
by 'endadr' and 'entryadr'. Each parameter is written as a
16-bit binary value, and occupies 2 bytes in the file. Data
is written to the file following the 6-byte block containing
these three parameters.

..

Example

CREATE fILEl.BIN:l

* DSAVE fILEl.BIN:l 100 7IT 200

(saves the binary program in memory
between address lOOH and 7FFH having
the program eritry address at 200H, on
the file FlLEl.BIN:l and adjusts the
file length to 15 sectors).

4~1~11 !DISK - Initialise Diskette

FORMI\T *IDISK Diskunit

The !DISK command initialise a diskette in drive 'diskunit'
(0 or 1) by creating the directory file, writing sector
identification labels on it, and testing each sector for

. correct read ano write operation. New diskettes must be
formatted via the !DISK command before they can be used.

Diskettes used iri the DAI diskette system are "sol'tsector
ed". This means that each sector is preceded by a label
block of data containing identification information for that
sector.

During read and write operations DOS identifies the correct
sector on the selected track by reading these identification
labels.

The IDISK command does not verify the diskette (can be done
subsequently via the VERIFY command).

For example : a new diskette in drive 1 can be initialized
as follows

*IDISK 1

The absence of error messages indicates that all sectors on
the above diskette can be written to and read back cor
rectly.

Important Notes 1) The diskette being initialized must
have its write-protect notch
uncovered.

2) The original contents of the
diskette will be lost.

4.1.12 OPENI - Open File for Input

FORMAT : *OPENI filerefereoce

The OPENI command opens the diskette file 'filereference' in
input mode. Input mode specifies that , data will be read from
the file.

Opening a file in input mode enters its name in the active
file table maintained by DOS, initializes a file pointer to
the start of that file, and allocates one of the buffers on
the diskette controller card to the file. After a file has
been opened in input mode, its contents can be read serially
starting at the beginning.

4.1.13 PROTECT - Write-Protect File

FORMAT : * PROTECT Filerefenmce

A write-protect file cannot be over-written, renamed or
deleted. Attempts to do so will produce a DOS error message
indicating that the file is write-protected.

However, certain commands such as !DISK and BACKUP will
overwrite all the original contents of a diskette without
recognising the write-protect attributes given to files on
it.

The PROTECT command enables selected files on a diskette to
be -write-protected, whereas covering the write-protect notch
of the diskette will protect the entire diskette.
Write-protect attributes given to files via this command
wi~l be indicated on the diskette directory listing with
a 'W'.

Example

Important Note

* PROTECT DATAl:l

The diskette containing the speci
fied file must have its protect notch
uncovered.

4.1.14 RECOVER - Recover a Deleted File or Unprotect a
Protected rile

FORMAT * RECOVER Filerefereoce

The RECOVER command enables a previously deleted 'filere
ference' to be recovered and made accessible again. A
deleted file cannot be recovered if the data on the diskette
has subsequently been compacted via the COMPACT command.

When a file is deleted, oly the directory entry is flagged
as deleted and the data in the file remains on the diskette.

The sectors used by the deleted files will not released for
, re-allocation to new files, until all the accessible files
on the diskette are compacted into one block via the COMPACT
command. Until a diskette is compacted, all deleted files on
it can be restored by using the RECOVER command with the
correct filereferences.

The RECOVER command also unprotects the protected file
'filereference'.

Example

Important Note

4.1.15 REMOTE :

* RECOVER DATA:O

The diskette containing
specified file must have
write-protect notch uncovered.

FORMAT : * REMOTE

the
its

Opens cassette motor control contacts and enables automatic
motor control.

4.1.16 LOCAL

FORMAT : * LOCAL

Closes cassette motor control contacts to enable use of
cassette unit in local mode, and disables automatic motor
control.

4.1.17 RENAME - Rename a rile:

FORMAT * RENNE oldfilereference newfilereference

This command can be used to rename an existing file
'oldfilereference' with the new name 'newfilereference'.
Only the directory entry is changed.

The file 'newfilereference' should not exist already.

The file 'oldfilereference' should exist.

If a non- existent file is specified, a DOS error will be
produced.

The file 'oldfilereference' may have a writeprotect at
tribute given to it via the PROTECT commend.

The RENAME _command assumes that the diskunit in 'newfile
reference' is the same as that in 'oldfilereference'. If a
different diskunit is specified in the 'newfilereference' jt

-will be ignored.

Example: * RENAME TEST.BIN:! PROG:l

Important Note : The diskette containing the specified
file must have its write-protect notch
uncovered.

4.1.18 RESETD - Reset Diskette Controller

FORMAT : * RESETD

The RESETD command will reset the diskette controller card,
clear the active file table maintained by DOS, and make
standard peripheral assignments to the logical I/O channels.

4.1.19 TINYDOS:

FORMAT : * TINYDOS

See the section "RAM memory Map".

4.1.20 VERIFY - Verify Date on Diskette:

FORMAT * VERIFY fILE:REFERENCE

The verify command reads the contents of the file 'file
reference' to check for read errors. The original contents
of the specified file remain unchanged. The file will be
opened and closed automatically.

* VERifY DISK n

* VERIFY DISKS

Verify contents of the diskette in
drive (n = 0 or 1). In case read
errors are detected, several error
messages will be displayed, and the
checking will continue.

Similar to above command, except
that the contents of diskettes in both
drives will be verified.

..

4.3 SPECIAL DOS f[ATURE (V 2.0)

An additional feature is provided by DOS to enable a BASIC
- program file to be loaded and executed when its filename is
stored in a BASIC string variable.

This is supplementary to the normal LOAD "file" command
which only allows a string constant as the filereference.

This feature is called up by the sequence

CALLM #300, A$ where A$ can be any array variable.

Example

On .the screen

Write program and save it.

* 10 FOR X= l TO 10 : PRINT X
* 15 NEXT
* 20 END

* SAVE "TEST:O"
save program as file TEST.BAS.

Load program and execute it.
* NEW
* 10 A$ = "TEST: □"
* 20 CALLM #300, A$
* 30 END
* RUN

BASIC Vl.l
LO
2.0
3.0
4.0
5.0
6.0
7.0
s.o
9.0

10.0
END PROGRAM

The file reference must be exactly in the format of the
example. Do not include an extent name, and do not expect
automatic default to disk unit O •

I
I.

5. INCLUDING DOS COHMANDS IN BASIC PROGRAMS

Any DOS command and its parameters can be included in a
BASIC program by containing it in a PRINT statement.

Any single or any group of such DOS commands contained in
PRINT statements must be preceded by- the BASIC command (see
also section 11.2).

POKE # 131,3

and ended by the BASIC command

POKE # 131,0

The total number of characters generated by such a DOS
command contained in a PRINT statement (upto the terminating
carriage-return) must be less than or equal to 48.

The command "POKE #131,3" will channel all subsequent
characters output via the BASIC statement PRINT to the DOS

· command handler. They will be re-channeled to the printer in
execution cif the BASIC command "POKE #131,0".

Example INPUT "fILENAME=";N$
POKE #131,3
PRINT "CREATE";N$;":l"
PRINT "COPY s□-URCE:l";N$;":l"
PRINT "PROTECT";N$;":l"
POKE #131,0

6. DOS COMMAND TABLE STRUCTURE

The structure of the DOS command table need not be known for
normal use of DOS commands. However, an understanding of
this table structure enables the user to add machine code
sequences which can be executed simply as new DOS-type
command codes (after full DOS has been loaded). Whenever a
DOS command · is encountered (via keyboard or via the PRINT
statement) control is passed to the DOS command handler,

, which will .scan the DOS command table for the presence of
that command.

TBLNK:

"297H Adr (l)

298H dr (h)

{-table link)

length

command
name as
an ASCII
string.

Adr (1)
-Ad;: (h) - -

length

command
name as
an ASCII
string

,_A_d~ (!) __
Adr (h)

Adr+l)
-Adr hJ -

length = 0

_Adr 8) __
Adr h)

p
, start address of above
command subroutine

0 }
start address of above
command subroutine

l start address of ·above
jcommand subroutine

Adr (1\
- - -,:L\ -Adr ,h,

Adr (1)
-Adr '{h)-

length = 0

Adr = 0 1 no
-Adr ;- 0 - - r further table

The scheme above illustrates visually the structure of th6
DOS command table. The address locations 297H and 298H

, contain the pointer address (low, highorder) to the start of
the command table. The first entry in the command table
contains a binary number specifying the number of ASCII
characters which follow immediately and constitute the first
command code name. The last character of the command code
name is followed by the start address of a machine-code
subroutine which must be called to execute that command.
This address will be followed by the length of the next
command code etc. If no more codes follow, the length will
be set to zero.

The two bytes following the last length parameter (zero)
indicates the presence or absence of an address to the next
table (low, high order).

New user-defined commands can be linked into the DOS command
table in the following way

1. Set up the user command table in correct format.
The last length parameter which is zero must be followed
by en address pointer to the start of the normal DOS com
mend table.

Example :

Set the label corresponding to the start of the
user-defined command table be NEWTB, end let the label
corresponding to the address pointer at the end of it
(pointing to the DOS commend table) be CONTA

The user table can be linked to the DOS commend table in
the following way:

INIT :

PUSH
LHLD
SHLD
LXI
SHLD
POP
RET

H
TBLNK
CONTA
H,NEWTB
TBLNK
H

Such a sequence must be executed once only.
If not, the link to the DOS command table will be lost.

•

4 ASSIGN CASSETTE:
Assign cassette for reed end write operations
associated with LOAD, LOADA, SAVE, SAVE~,R, W
commands. Normal default is to cassette unit
0 after reset; if t;his has been changed
subsequently, the above command will rein
state the last selection.

* ASSIGN CASSETTE n
Assign cassette unit n (n= □ or 1) for read
and write operations associated with LOAD,
LOADA, SAVE, SAVEA, R, W commands.

* ASSIGN TO DISK n

DISK n (n = 0 or 1)
Si~ilar to above ASSJGN commends, but for
write operations only.

* ASSIGN FROM DISK n

DISK n (n = 0 or 1
. Similar to above ASSIGN commands, but for
read operations only.

* ASSIGN OUTPUT TO SCREEN
PRINTER
DISK

•

Assigns the system data outputs to the
SCREEN, SCREEN+ PRINTER, or diskette, res
pectively. If the DISK option iG specified
the system output will be written to a cur
rently open ASCII diskette file •

* ASSIGN INPUT FROM KEYBOARD
RS232
DISK

Reads the system input date from the key
board, RS232 channel, or diskette respective
ly. The first two options will generate
automatic echo of the data read onto the
screen. If the DISK option is specified, the
data will be read from a currently open ASCII
diskette file

4.1.2 BACKUP= Produces e backup diskette copy

FORMAT * BACKUP ORIGIN>ISK

The BACKUP command completely duplicates all of the data on
the diskette loaded on drive "origindisk" (0 or l) to an
initialised or uninitialised diskette loaded into the des
tination disk drive. The BACKUP command automatically for
mats the destination diskette. The original contP-nts of the
diskette in drive "origindisk" remain unchanged. Write-pro
'tect attributes, given to files via the PROTECT command,
will be copied correctly.

Example : * BACKUP O Make an exact copy of the total
contents of the diskette in drive 0
onto the diskette in drive 1

In case a read or write error is encountered during the
execution of the BACKUP command, an error message will be
displayed on the console.

Important Note : The destination diskette must have its
write-protect notch uncovered.

4.1.J AUTO - Automatic Line Numbering

AUTO nnn

FORMATS

Enables automatic line numbering for keyboard
entry of BASIC programs, starting at line

number "nnn" (must be non-zero) with step~ of
10

AUTO Carrieg-return
Disables the above automatic line numbering
and resumes manual line numbering. Before the
command is typed, the line number which
automatically appears at the start of the line
must be deleted by using char. delete.

4.1.4 COMPACT - Compact Date on Diskette

FORMAT : * COMPACT Origindisk

When a diskette file is deleted the sectors that were
utilized for that file are not automatically released for
re-allocation to new files. As more files are added the
number of ·tree sectors remaining on the diskette can
decrease to zero, even though some files have been deleted.
The COMPACT command rearranges the data on the diskette and
releases all sectors used by deleted files for re-allocation
to new files. All of the sectors used by non-deleted files
are made to occupy one contiguous block from the sta~t of
the diskette. All remaining free sectors will then be con
tiguous at the end of the diskette, and become available for
allocation to hew files.

The COMPACT command reads all the non-deleted files on the
diskette in drive "origindisk" (0 or 1), and writes them in
sequence onto an initialized or unitialized diskette in the
other drive • It automatically formats the destination
diskette. Write-protect attributes given to files via the
PROTECT command will be copied correctly.

Examples

* COMPACT 1

* COMPACT 0

Compacts the data on diskette in drive 1 onto
the diskette in drive 0

Compacts the data on diskette in drive O onto
the diskette in drive 1.

In case a read or write error is detected during the
execution of the COMPACT command an error message will be
displayed on the console.

In:portent Note The destination diskette must have its
write-protect notch uncovered

4.1.5 COPY - Copy e file

FORMATS

* COPY filereference (with diskunit = O, or omitted)
Copy file from diskette in drive Oto
the diskette in drive 1

* COPY filereference (with diskunit 1)
Copy file from diskette in drive 1 to
the diskette in drive 0

* COPY Sourcefileref:S destinationfileref:l
Copy the specified source file to the
specified destination file

Note All three formats of the COPY command automatically
open and close the destination file. If the
destination file does not already exist, it
is created to be 1 sector longer in length
than the source file. This feature can
easily be used to extend the length of an
existing file .
If the same file · length is desired, the
destination file should first be created via
the CREATE command.

Important Note:

The diskette containing the specified desti
nation file must have its write protect notch
uncovered.

4.1.6 CREATE - Create e New File

FORMAT * CREATE filereference filelenght
CREATE filereference

The CREATE command creates a new file "filereference". The
"filelength" is a decimal number specifying the number of
sectors to be allocated to the new file. The CREATE command
enters the filename in the diskette directory file, and
allocates the specified number of sectors to the created
file. Space is allocated to a file in complete sectors, even
if the last sector in a file is only partially used As
files are created DOS allocates sectors sequentially,
starting from the first sector following the end of the last
file (~ccessible or deleted) physically present on the
diskette.

The final length requirement of an output is sometimes not
known until after all data is written to it. In such cases
it is uesful to be able to allocate all the free sectors
currently available on a diskette to that file. Thi.sis
achieved by omitting the "filelength" parameter in the
CREATE command. Only one such file is permitted on each
diskette. After all the data has been written to such a
file, it will be closed to adjust its length to the number
of sectors actually used and to release ell the unused
sectors.

Examples

* CREATE GENl 1

* CREATE GENl:l 1

* CREATE GEN2

Create file GENl of length l sector,
on diskette in drive 0

Idem Disk l

Create file GENZ on diskette in drive
O and allocate all free sectors to it.

. ...

The locations TBLNK and TBLNK+l will be initialized to the
start of the DOS command table when DOS is loaded into

_memory.

TBLNK:

297H Adr (1)
- - - - -

298H Adr (h)

DOS

-- - I

I
at normal
DOS
loading

I

I

command
table

00

00 -------
00

NEWTB:

user
command
table

00

!.dr(_!) ___
Adr (h)

I.

7. RAM MEMORY HAP

RAM Memory Map

0,--------

system variables
. 2EB

2E C i--------1
Tiny DOS
(LOAD, LOADA
SAVE, SA VEA,'
Utility R, W).

DOS Command
handler {!or all
DOS commands)

DOS commands

{Tiny DOS)

1, 5K

r-------~- - -
Heap

(before DOS
command

TINYDOS)

BASIC

PROGRAM

Symbol Table

free space

screen etc.

256

(Full DOS)

et SK

~ ,--------_;,_

system variables
2EB 1

2EC r--------~

Tiny DOS

Heap

{after DOS

command

TINY DOS

BASIC

PROGRAM
~-----

Symbol Table

free space

screen etc.

l .

The power-on reset bootstrap sequence loads the full DOS
(about 5K) into memory. At any subsequent time, this full
DOS can be reduced to tiny DOS via the DOS command TINYDOS.
Tiny DOS represents~ cassette replacement, and only sup-

, ports the BASIC commends LOAD, LOADA, SAVE, ~AVEA end the
Utility commands R,W.

All DOS commands are processed via the DOS command handler.
The DOS command TINYDOS will delete the DOS command area and
ther DOS command handler, by re-allocating these areas to
the heap. the heap can then be reduced and the BASIC program
area corresponding increased via the BASIC command CLEAR.

for example : The binary program file $USER.BIN loaded
during the power-on reset bootstrap procedure can cell the
DOS command routine TINYDOS to reduce the full DOS top
TINYDOS.

..

8. ASCII INPUT AND OUTPUT FILES

In order to provide the user e more flexible file formet
outside the constraints of the array SAVE and LOAD commands
(LOADA, SAVEA), sequential ASCII files can be used.

Theser operate, and are interfaced by the user as follows

8.1 ASCII INPUT FILES

The file must first be opened by using the 'OPEN!' command.
The format of this is :

* O?ENI FIRELERITENCE

This command automatically closes any file previously opened
for ASCII input.

After the execution of the command 'ASSIGN INPUT rROM DISK'
any time that the. system would normally access the keyboard

· for character input these will come, in sequence, from the
opened file. Thus, immediate commands~ program entry,
utility commands may all be prepared as are responses to
'INPUT' or 'tETC' statements. When the end-of-file error is
reported, the input stream automatically return to the
keyboard, thus preventing any serious system crashes that
may otherwise be caused.

An ~xample of using the ASCII input mode follows :

10 Clear 1000 :POKE/=! 131,3:PRINT "OPENI $DKDIR"
15 PRINT "ASSIGN INPUT FROM DISK":PRINT "ASSIGN OUTPUT TO

SCREEN"
20 FOR l=l to 18:REM 18 SECTORS IN THE DIRECTORY
30 FOR J=l to 6:REM 6 ENTRIES PER SECTOR
40 A$=""
50 FOR K=l to 21:REM 21 BYTES PER ENTRTY
60 A$:A$+CHR$(GETC):REM NEXT CHARACTER FROM DISK
70 NEXT K
80 PRINT LEFT$(A$,ll):REM FILENAME + EXTENSION
90 NEXT J

100 K:GETC+GETC:REM PURGE 2 PAD CHARACTERS
110 NEXT I
120 POKE #131,3:PRINT "ASSIGN INPUT FROM KEYBOARD"
130 POKE #131,1
140 END

8.2 ASCII OUTPUT FILES

A system of- ASCII control characters has been defined to
direct the command character stream ('PRINTED' after 'POK£
#131,3 1) to either the DOS command handler, the ASCII file

' manager, or the currently selected ASCII output file. These
control characters, and their functiops are as follows :

CHR$(1)

Special Case

CHR$(3)

Close current output file (with adjust)
switches character stream to file manager
(normally used to precede filereference).
CHR$(1) means SOH.

SOH + ETX, closes file but does not open a new
file

CHR$(2) Used to select the ASCII file to
receive characters. When STX follows the
filereference (preceded by SOH), the file is
created if necessary, then opened for output.
CHR$(2) means STX. .

Returns character stream back to the DOS
command handler. This is the only character
which can suspend the character stream going
to the output file. Hence, it is also the only
exception to the otherwise totally transparent
nature of the ASCII input/output mode. CHR$(3)
means ETX.

These characters, and the filereference and data stream are
sent by normal PRINT statements whilst the output has been
assigned to disk.

I.e. POKE#. 131,3

Normal output to screen or printer may be freely inter
spersed with disk data. DOS commands may also be issued but
caution must be taken in avoiding the use of any DOS command
which accesses the diskettes. These can cause the file to be
closed prematurely and without adjust.

Thus the final sector of the dataset may not be written onto
the diskette. This cautions also applies to the ASCII input
mode.

...

--

An example of ASCII output:

l CLEAR 1000:SOH$:CHR$(1):STX$:CHR$(2):ETX$:CHR$(3)

10 POKE #131,3:PRINT "RESETD"

20 PRINT SOH$+i'FILENAME"+STX$+ETX$·

30 PRINT "ASSIGN OUTPUT TO SCREEN"

40 PRINT "THIS TEXT IS ON THE SCREEN"

50 POKE #131,3:PRINT STX$+THIS TEXT IS TO THE DISK FILE
"+ETX$

60 PRINT STX$+"THIS IS SOME MORE TEXT"

70 PRINT:PRINT:PRINT "THEN SOME BLANK LINES"+ETX$

BO PRINT SOH$:"ANOTHER"+STX$+"DATA TO ANOTHER FILE"+ETX$

90 PRINT SOH$+ETX$:REM CLOSE LAST FILE

100' PRINT "ASSIGN OUTPUT TO SCREEN"

llO PRINT: PRINT "BYE-BYE"

120 ' STOP

9. MERGING Of PROGRAMS

9.1 Introduction

Large programs can be devided into smaller modules, and executed.

9.2 Example:

STEPS TO BE DONE:

l) Writi program l

2) Save on Disk

3) Write second program 2 with different line numbers

4) When ready: to merge both programs:

a) Clear enough place for the program on disk, for
instance CLEAR 10000

b) EDIT (go to editor)

c) BREAK BREAK (2 times BREAK !!!)

d) Load program l from disk

e) Poke #135,2 (fetch program 2 from EDIT buffer)
~) L i ~,

Both .programs are merged together now.

,.

10. MASTERDOS ROUTINES

, 10.l Different Routines

Under utility control or with a machine code routine, the
user has access to all the disk operating system features.

The subjoined table gives a surrrnary of these features.

fUNCTIONS Accu D,E ADDRESS(HEX)

CREATE A FILE Diskunit
in ASCII

DELETE A FILE Diskunit
in ASCII

OPEN A fILE Diskunit
in ASCII

CLOSE A FILE _ A='I';Input
='O';Output

File Length Pointer to Length of
fileneme filename

Pointer to Lenght of
fileneme filename

B='O';Output Pointer to
='!';Input filename :
='R' ;Directory

Length of
filename

501

A35

447

512

=' D' ;Directory

WRITE A ME
MORY AREA
ID DISK

READ TD A
MEMORY AREA
FROM DISK

'!'for Output

'!'for Input

WRITE A BLOCK 'O'for Output
OF DATA TO
DISK

READ A BLOCK '!'for Input
OF DATA FROM
DISK

WRITE A
SECTOR

READ A
SECTOR

Diskunit
in ASCII

Diskunit
in ASCII

Pointer to
first byte
to send

Pointer to
lest byte
to send

Pointer to Pointer to
start of me- end of me-
mory area

Pointer to
start of
block

mory area

Length of
block

A7E

A84

58f

Pointer to
start of
same area

Pointer to 569
end of same

B:trecknumber Pointer to
C:Sectornumbersector

buffer

B:trecknumber Pointer to
C:Sectornumbersector

buff eT.

area

AAD

A97

,;

.)

10.2 [xBJ11ple in Utility Hode

,A typical sequence is

Z3 ; reset buffer

Set registers

G (address) ·

On return the A register may contain an error code.

Create file

A

B,C

H,L

D,E

Entry

EXAMPLE:

= Disk Unit in ASCII

= file Length

= Pointer to file name

= Length of file name

address 501 Hex

23
S2000 XX - 45 XX - 58 XX - 41 XX - 40

XA XX - 31
XB M - 00 XX - 10
XD XX - 00 XX - 04 - -XH XX - 20 XX - 00

G501
XA

set EXAM at location
2000 H

select unit 1
create 10 sectors
length of EXAM
points to EXAM

(file name)

execute
fetch error code

:,,

I:'

J

11

11. SPECIAL RAH LOCATIONS

11.1 Branch VECTOR

To change from cassette to disk operation or back, a series
, of branch locations in RAM must be changed.

for example this allows programs to be loaded from cassette
and saved on disk.

Address in RAM
(HEX)

Casette Contents Disk Contents
(HEX) (HEX)

Routine

2C5 C3 B8 02 C3 A7 06 Write open (open disk
file for output)

2C8 C3 fl 02 C3 D7 06 Write block (to an
opened disk)

2CB C3 27 04 C3 51 07 Write close (close and
output file)

2CE C3 25 03 C3 65 08 Read open (open a file
for input)

2D1 C3 40 03 C3 79 08 Read block from disk

2D4 C3 45 D4 C3 63 09 Read close (close
current input file)

207 C3 A2 D3 C3 A2 D3 Match block

2DA C9 00 00 C9 00 OD Reset
4A ,jl';:,

2DD C9 DO OD C3 CF OA Character out
q

2ED C3 B4 OD C3 46 17 Character in

2E3 C9 OD DO C9 00 00 Spare

Exam(;!le

To load programsfromcassettestoadiskbasedcomputerchangethebranchesat
locations 2CE, 2D1 and 2D4.

* UT

- s2CE C3 - C3 65 - 25 08 - D3

- s2D1 C3 - C3 79 - 40 08 - D3

- s2D4 C3 - C3 63 - 45 09 - D4

- B

* LOAD "EXAM" REM Load the file EXAM.BAS from cassette

* SAVE "EXAM" REM Save the file EXAM, BAS on diskette 0

;,-

... ·
J

11.2 Print Output

'Because the disk controller recognises commands in ASCII
code the print statement may be used !o issue some commands.

l3sue a POKE to location# 131 as below to direct output
for various purposes.

Code

0

l

2

3

Example

Result Output

Screen+ RS232 (serial)

Screen only

Edit buffer

Disk (DOUTC)

see section 5.1

11.J INPUT

Issue a poke to location #135 as below to read data from
device.

Code Result Input

0 Keyboard

l RS232

2 EDIT BUFFER

..

..,

lJ. DOS ERRORS

Any errors encountered by master or slave DOS when attemp
ting to interpret or execute a DOS command will normally be
signalled by error messages on the console device.

They contain an identifying error code, usually followed by
an explanatory error message. After the error indication,
DOS will send the prompt character •~• to the console and
wait for the next command.

Error messages generated during DOS command identification,
parameter recognition or subsequent execution will contain
an er~or code which id~ntifies the cause of the error.

This error code can be used to deduce the corrective action
to be taken before the command can be reattemped.

Read/write errors detected during disk access while exe
cuting certain DOS commands (such as VERIFY DISK n) will
produce error m~ssag~s containing an identification code.

After the first word in the command has been correctly
identified, BASIC will continue to read the following cha
racters as necessary to find the parameters associated with
that command. Any error discovered at this stage will simply
produce the error message "SYNTAX ERROR I.N DOS COMMAND". (no
action has yet been taken by BASIC). For example, if the
user attemps to list a diskette directory via the command
DIR, but fails to specify which diskunit, a Syntax error
will be produced as follows :

*DIR (instead of DIR O or DIR l)
SYNTAX ERROR IN DOS COMMAND
*

Once all the required parameters following the command word
have been correctly read, BASIC will initiate execution of
the specified task. Any characters found between the space
or comma which follows the last parameter required by a DOS
command, and the carriage-return which terminates the
command, will be ignored by master DOS.

This feature can be used to include comments within a DOS
command, without causing any syntax errors.

.,

13 .1 DOS Error Codes and Mes.sages

Mester end ~lave DOS contain a large number of resident
routines which perform the necessary tasks during the
execution of the DOS commands.

At the end of its task, a routine wtl return a binary error
cope (in the Accumulator) to master DOS, or to the calling
program, which indicates whether or not any errors were
detected during the execution of that task. If no error was
detected, a code of 00 will be returned. Any non-zero error
code indicates the occurence of an error, and its value
identifies the type of error. This error code will then be
sent by master DOS to an error analysis routine, which will
display a suitable error message on the console.

If the master DOS commands are invoked by a user program via
calls to the relevant DOS routines, the returned error codes
have to be interpreted by that program.

If master DOS is not used at all, and communication with the
slave DOS is done by a user program, only the error codes
OlH to llH, and 81H to BAH, from slave DOS will be received
by that program.

Such a program has to include an error analysis routine for
dealing with those errors.

lJ.1.1 Command Syntax Errors

During the command identification ~tage, BASIC reads the
first word typed by the Operator following the prompt
character, to determine what action has to be performed.

This command word should correspond to one of the standard
BASIC or DOS commands. If it does not match one of the
command words, an error message "SYNTAX ERROR" wi 11 be
produced.

13.1.2 Error Code Generation

After basic has correctly read a command word and the
necessary parameters via the console input channel, it will
execute the command or transmit the data which is necessary
for a DOS command to master DOS.

Master DOS will then transmit the command to slave DOS via
one or mar File Control Blocks (FCBs).

..,

..

..

Any errors detected by master DOS during the command iden
tification or parameter recognition stage will generate an
error code in the range 21H to 24H.

If master DOS is not used at all, -and communication with
slave DOS is done by a user program, the above error codes
will not be encountered. In such case, the fCBs for com
municating with slave DOS will have to be generated by the
user program.

If slave DOS receives an fCB with errors, or if the ope
ration specified in the fCBs is invalid, it will send back
an identifying error code in the range OlH to lOH. When the
fCBs are created by master DOS they should be error free,
unless master DOS has been corrupted. Such errors can
usually be corrected by reloading master DOS from a good
system diskette.

The slave DOS uses the information contained in the fCBs
received via the DCE-BUS, to drive the hardware on the
diskette controllet card for executing the specified task.

If any hardware errors are detected during the command
execution, slave DOS will send back an identifying error
code in the range BlH to BAH •

Error Code

01

02

03

04

05

06

07

08

09

OA

0B

13.1.3 Error Codes Generated by Sleve DOS

A list of error codes from slave DOS is given below.

These can be due to errors detected in the fCBs received by slave
DOS, or due Jo invalid operations specified in them. Some of these
error codes are given in hexadecimal.

Error Message

Diskunit can only be
0 or 1

File to be created
already exists

File too long for
remaining disk space

Cause of Error

Invalid command code specified in the
fCB received by slave DOS.

Incomplete or erroneous FCB received by
slave DOS

An invalid number has been specified
for the diskunit. The only valid values
are O and 1 (in ASCII).

Att~mpt to create a file which already
exists on that diskette

Attempt to create a file longer than
the space available on that diskette

Invalid access mode specified in teh
fCB received by slave DOS. Valid access
modes are I (for input) and O (for
output), in ASCII

File is write-protected Attempt to delete, rename or write a
use recover file which has been given an attribute

'W' via the PROTECT command

File not found check
spelling of filename

File is not opened
for access

Directory is full

Attempt to open a file which is not
entered in the diskette directory. This
error can also be caused by incorrect
DOS command names

Attempt to read from or write to a file
which has not been opened in the
corresponding I/O mode

Diskette directory full. Occurs when a
diskette directory contains 108 file
entries (including directory file), and
an attempt is made to create a new file
on it.

FCB received by slave DOS too long.
Occurs when too many parameter bytes
are sent to slave DOS. The maximum
number of parameter bytes that can be
sent after the command code is 23. (If
the FCB contains more characters that
what is required by the command code,
they will be ignored by slave DOS)

oc

CD

OE

lOH

llH

1,/

:..

File was already open
Pointer is not reset

End of file

No parameters in the FCB received by
slave DOS. Indicates that only the
command code has been sent without the
necessary paramaters

Attempt to open a file is already
open in that I/O mode. Can be caused by
DOS commands which open parameter files
automatically

Occurs if the physical end-of-file is
.detected when attempting to read from
or write to a file. Input files with a
software end-of-file marker (Control-Z)
will not produce this error

Occurs when attempting to open a new
file when the Active File Table (AFT)
is full due to five files already being
open. No more than five diskette files
can be open at any time

Occurs when attempting to read from
or write to a diskette file in direct
access mode, with a record number
higher than the file length

"

13.1.4 Error Codes Generated by Hester DOS

A list of error codes generated by master DOS is given
below.

If master DOS is not used at all, and communication with
slave DOS is done by a user program, these error codes will

. not be encountered. The error codes are given in hexadecimal.

Error Code

21

22

(23)

Error Message

SYNTAX ERROR IN
DOS COMMAND

(not an error)

Cause of Error

Indicates a syntax error in the
command input (e.g. missing parameters,
non-hexadecimal address parameter
etc.). The error code wi 11 not be
included in the message and the
currently open files will not be
indicated.

Invalid peripheral assignment.
Occurs when attempting to assign a
logical channel to a physical
peripheral of the incorrect I/O type,
or when specifying invalid channel or
peripheral codes, via the DOS command
ASSIGN.

This error code provides a warning
that no extension has been specified in
a filereference. It is ingored by the
error analysis routine in master DOS,
and causes no error.

..

13.1.5 Hardware Error Codes Sent Vie Slave DOS

The slave DOS uses the information contained in the FCBs to
drive the hardware on the diskette controller card for
executing the specified task.

If an error is detected during such an operation, slave DOS
will send one of the error codes given below. All these
errors ~odes start with the hexadecimal digit 8.

Error Code Error Message Cause of Error

81

82

83

84

85

86

87

88

89

BA

SECTOR NOT FOUND

Invalid disk command

Invalid disk parameter

Select fault

Failed to find sector. Can be due to
an incorrectly inserted, corrupted or
uninitialized diskette

FOUND WRONG TRACK Failed to find track
RELOAD DISK AND TRY AGAIN

CRC ERROR NOTICED IN 10 CRC error in sector identificatio·n
block. Can be due to a corrupted
diskette

CRC ERROR NOTICED
DURING DATA READ

ILLEGAL DATA MARK

DATA MARK DELETED

DISK ERROR DURING
WRITING

CRC error in data. Usually due to
disk corruption or damage

Illegal data mark

Deleted datamark

Write ·fault

Except from the above hardware errors, codes 84 and 87 can
be caused by a diskette being incorrectly inserted into the
drive, or the data being on it being corrupted due to a
scratch on its surface etc. All of the errors except 84 and
87 are very rare. If they occur, the following corrective
action is recommended before trying the command again.

* Check if diskette is correctly inserted into the drive

* Ensure that the diskette has already been formatted (via
the IDISK command)

* Replace the diskette producing the error

* Reload DOS from a good system diskette.

..

--- - - ---------- - - ---------- -----,

13.2 LOADING ERRORS (BASIC)

Loading errors may be detected when accessing diskette files
vie the BASIC commands LOAD, LOADA or the Utility command R.

LOADING ERROR · 0

l

File not found ,

Block too large (i.e. not enough
memory). Data will be loaded till
the end of the available memory
block.
For example, LOAD allocates from top
of heap to bottom of screen area for
loading programs

2 Bad syntax, or invalid file type

3 Any other disk error (PEEK #
"erradr" will give the errorcode)

In all cases, the actual DOS error code will be stored at
the memory address "erradr" (to be specified later), which
can be read and processed.

13.3 OTHER ERRORS

All other DOS errors will be displayed on the TV screen as

+++ DISK ERROR m +++

where 'nn' is the 2-digit hexadecimal error code specified
before.

13.4 ERROR HANDLING

Any DOS error can be handled (for example, within a BASIC
program) in the following way :

ERROR I= PEEK# A32

The result will be zero (if no error), or it will give the
detected error code.

Example :

140 ERROR%:PEEK(#A32):REM ERROR BYTE
150 POKE #A32,0:REM SET ERROR BYTE TO 0
160 IF ERROR%:l4 THEN 210
170 IF ERROR%:l9 THEN 210
180 IF KEY$ (Y%-l)="UUUUUUUUUUUU" THEN 210
190 IF ERROR%=□ · THEN 110
200 PRINT "ERROR NR. ";ERROR%;:END

14. STANDARD SYSTEM DISKETTE: DSK-PCD v2.o
C+ AZERTY rormat)

This diskette provides 4 system programs to the user.

l) $DKBDDTS Bootstrap routine. , See power-up details

2) $MSTRDDS DAI Computer DOS V 2.0

3) $USER. BAS DAI II AUTO-MENU" program executed on
power-up

4) $AZERTY.BIN Modified Keyboard map to transform the

Keyboard Layout

' II

keyboard into an AZERTY (European) format.
Must be renamedUSER.BIN before use. The

. keycaps must be re-arranged into the
following layout :

% {) ? ..
I TA I 2 5 7 8 9 0

J.
A z E R T y u I 0 p (

s D F G H J K L M > har
Q

• del
re pt

<- + • =
SHIFT w X C V I3 N SHIFT

s p A C E

/l "

	IMG_20211213_0005
	IMG_20211213_0004
	IMG_20211213_0003
	IMG_20211213_0002
	IMG_20211213_0001

