7.11 RWC-MATH : SCIENTIFIC MATH MODULE

7.11.1 FUNCTIONAL DESCRIPTION

The RWC-MATH Real-World interface module provides the DCE user with complete scientific floating-point math functions for manipulating numbers with 8-digit mantissa and 2-digit exponent.

The following functions are provided: +, -, x, \div , 1/x, \sqrt{x} , x^2 , 10^x , e^x , y^x , π , $\ln x$, $\log x$, $\sin x$, $\cos x$, $\sin x$, $\cos x$, $\sin x$, $\sin x$, $\cos x$, $\sin x$, $\sin x$, $\sin x$, $\cos x$, $\sin x$,

Each module has an identification address defined by a hexadecimal switch, and up to fifteen modules can be directly connected to the DCE-BUS.

7.11.2 FEATURES

- scientific calculations with upto 8-digit mantissa and 2-digit exponent.
- trigonometrical, logarithmic and exponential functions.
- 4 register Reverse Polish Notation push down stack.
- extra memory register.
- error flag generation.
- autonomous operation.
- o interrupt generation on completion of operation by jumper selection.
- standard hardware and software interface to the DCE-BUS.
- · selectable card address.
- single 100 x 160 mm eurocard format.

7.11.3 FUNCTIONAL BLOCK DIAGRAM

7. 11. 4 SYSTEM DESIGN PARAMETERS

7. 11. 4. 1 Hardware Configuration

The functional block diagram in Section 7.11.3 illustrates the hardware configuration of the RWC-MATH module. It uses a 57109 MOS/LSI Number-Oriented Microprocessor ("Number Cruncher") for performing all the mathematical calculations.

Data is passed to the RWC-MATH module on a digit by digit basis. The function commands can be interspersed with the data, in the same manner as when pressing keys to enter number and function sequences into a calculator.

The number processor on the module contains 5 internal registers (X, Y, Z, T and M). Each register has 8 mantissa BCD digits with sign, and 2 exponent BCD digits with sign. A complete set of instructions are provided for performing various arithmetic and transfer operations on these registers. Internal calculations are always in the 8-digit scientific notation specified above. Input/Output operations to the number processor may also be done in decimal notation, consisting of upto 8 mantissa BCD digits, a mantissa sign digit and a decimal point position indicator. A special toggle command permits mode changing from decimal to scientific notation, or viceversa, when reading back the results from the number processor.

Ports 0 and 1 of the RWC-MATH module RIC are configured in handshake output and input modes. The command and data inputs to the number processor are provided by RIC Port 0 in handshake mode. The address and data outputs from the number processor are read into RIC Port 1, also in handshake mode. Bits 4 and 5 of RIC Port 2 are configured as input, for reading the ERROR and \overline{BR} signals from the number processor.

The two interrupt request signals associated with RIC Ports 0 and 1 are merged into a single interrupt request. This may be connected to the interrupt request lines IN7 or EXINTR on the DCE-BUS via a jumper, for interrupt driven operation of the RWC-MATH module. For polled operation, the two interrupt request signals from RIC Port 2 can be software scanned periodically.

7.11.4.2 Programming Specifications

The RWC-MATH module is addressed via the standard DCE-BUS interface. Programming specifications for driving the DCE-BUS are given in Section 4.1.

RIC Initialization

The RIC on the RWC-MATH module should be initialized by writing the control word 0AEH to the RIC Command Register. This configures RIC Port 0 as handshaking output and RIC Port 1 as handshaking input. Unused Bits 4 and 5 of Port 2 are configured as input.

RIC Device Addresses

The RIC on the RWC-MATH module has 3 data ports and a command register. Different modes of communication between the RIC Ports and the DCE-BUS data path are established depending on the Device Address received by the RWC-MATH module from the DCE-BUS. Table 7.11.1 shows the Device Addresses needed for different communication modes.

Format of Data

The command and data inputs to the number processor are sent from the DCE-BUS via RIC Port 0. The address and data outputs from the number

processor are read into the DCE-BUS via RIC Port 1. The free bits of RIC Port 2 are used for reading the error flag and the branch sense input from the number processor.

Signal allocation for RIC Ports 0, 1 and 2 are as follows:

Port 0: b0 - b3 = instruction bits, mantissa digit count or digit data (I1/D1 to I4/D4).

b3 is the most significant bit.

b4 = instruction bit, or data ready indicator $(I5/\overline{ADR})$.

b5 = most significant instruction bit, or jump condition indicator (I6/JC).

b6 = power on reset (POR)

b7 = not used

Port 1: b0 - b3 = BCD digit output (DO1 to DO4) b3 is the most significant bit.

b4 - b7 = digit address bits (DA1 to DA4). b7 is the most significant bit.

Port 2: b0 = Port 1 service interrupt request

b3 = Port 0 service interrupt request

b4 = error flag (ERROR)

b5 = latched branch sense input (\overline{BR}) . Normally not used.

b1, b2, b6, b7 = handshake control signals for Ports 0 and 1.

DEVICE ADDRESS (HEX)	RD	WR	OPERATION
YO	0	1	Invalid Operation
Yl	0	1	RIC Port 1→DCE Data Bus
Y2	0	1	RIC Port 2→DCE Data Bus
Y3	0	1	Illegal Condition
Y0	1	0	DCE Data Bus→RIC Port 0
YI	1	0	Invalid Operation
Y2	1	0	Invalid Operation
Y3	1	0	DCE Data Bus - RIC Command Register
ZX	Х	х	RIC Data Bus in 3-state

Notes:

- 1. Y is the card address select switch setting in hex (1 to F).
- 2. Z is any number other than Y.
- 3. X means don't care.
- 4. Bits 2 and 3 in Device Addresses are don't care states.
- 5. RDRWC and WRRWC software routines provide the \overline{RD} and \overline{WR} signals accordingly.

Table 7.11.1 : Device Address Table for RWC-MATH

Interpretation of Data

All data and instructions are input to the number processor via RIC Port 0. Numbers and instructions can be interspersed in any suitable sequence to produce the desired mathemetical result. Numbers are input as BCD digits, with Bits 4 to 7 equal to zero. Instructions are input as 6 bit words, with Bits 6 and 7 equal to zero. Table 7.11.2 shows the relevant instruction codes for the number processor.

The number processor is reset by the power on reset signal POR. This should be set high during initialization, and then maintained low.

All result output from the number processor are read back via RIC Port 1. Bits 4 to 7 of the result give a 4-bit address associated with each output digit. They may be used if necessary for checking that none of the output digits arriving synchronously are lost. These 4 bits are set to zero after each output sequence.

Result data is always read back from the X register of the number processor. Each digit is read as a BCD number via Bits 0 to 3 of RIC Port 1. The data format can be decimal or scientific notation, as shown in Tables 7.11.3 and 7.11.4 respectively.

RIC Port 2 provides the necessary control signals for maintaining correct protocol during the input and output operations with the number processor. After the reset sequence, or after the execution of a command, readiness of the number processor to accept the next input is detected via the Port 0 service request signal at Port 2 Bit 3. This bit may be made to generate an interrupt, or it may be polled.

After an output request command has been sent to the number processor, it will send the contents of the X register to Port 1, one digit at a time. The availability of this data can be detected via the Port 1 service request

signal at Port 2 Bit 0. This bit can be made to generate an interrupt, or it can be polled.

The number processor sets the error flag upon detection of an arithmetic or output error. The flag is made available at Port 2 Bit 4, for checking the validity of the output from the number processor.

It is good practice to read the control word from RIC Port 2 periodically and store it at start of the result buffer, or some other suitable location. This enables the main program to determine the execution status of an initiated command sequence, specially during interrupt driven operation of the number processor.

Special Considerations

The number processor on the RWC-MATH module has 4 work registers (X, Y, Z, T) forming a stack, and one memory register (M). Each of these registers has 8 mantissa digits with sign, and 2 exponent digits with sign:

A comprehensive set of commands are provided for performing mathematical functions and maipulations on the contents of these 5 registers. Input/output commands operate on the X register.

Command Codes

Table 7. 11. 2 gives the complete set of commands for the number processor. Command strings can be assembled by interspersing these commands with BCD data digits, for performing any desired calculation. Command strings can be any number of characters in length, and must be terminated with TERM. Some examples of command strings are given below:

- a) 2, DP, 5, 8, 9, EE, 2, CS, SQRT, TERM = square root of 2.589 x 10⁻²
- b) 6, DP, 3, 5, 4, 2, CS, EE, 3, CS, EN, 3, 1, 8, YTX, TERM = $-6.3542 \times 10^{-3} \times 318$
- c) 2, EX, EN, 2, SIN, YPX, TERM = $e^2 + \sin 2^\circ$

In all the above examples, the answer at the end of the computation will be in the X register. It can then be read via the OUTT command.

When building command strings, it is necessary to consider the effect of each command on the register stack, to ensure correct computational sequence. In the above examples, the command EN is used where necessary to end the digit entry and push the stack, so that the entered argument is pushed into register Y, and register X is available for the next entry.

Table 7.11.2 explains the results of each command, including the effects on the stack. Some commands are two bytes in length. These should be generated by using the 'DW' assembler command. Since the DW command generates two bytes with the low order byte first, the values for double byte commands given in Table 7.11.2 are inverted. For example the value for ISIN is given as 2420H, so that DW ISIN can generate the correct two byte code 2024H.

Some of the commands are explained below:

RAD Convert X from degrees to radians.

DEG Convert X from radians to degrees.

DP Decimal point position. Indicates that the following digits will be mantissa fraction.

CS Change sign of exponent or mantissa. Changes the sign of the mantissa if present before EE; changes the sign of the exponent if present after EE.

EN Terminates digit entry and pushes the stack. The entered argument will be in X and Y registers.

TOGM Changes mode from decimal notation to scientific notation, or vice-versa, depending on the current mode. The mode is set to decimal notation by the master clear (MCLR). The mode change affects only the OUTT instruction. Internal calculations are always in 8-digit scientific notation.

SMDC Mantissa digit count (MDC) is set to the contents of the following byte (1 to 8).

MCLR Master clear. Clears all internal registers and memory to zero, initializes I/O control signals from the number processor, sets mantissa digit count (MDC) = 8, and sets output mode = decimal notation.

ECLR Error flag reset. Normally not used.

POPS Pops the X, Y, Z, T register stack. Contents of the X register are lost.

ROLL Similar to POPS, except that none of the register contents are lost.

PI Sets $X = \pi$. Stack is not pushed.

LSH X mantissa is left shifted while leaving the decimal point in the same position. Former most significant digit is saved in a separate link digit. This link digit is normally zero except after a left shift. Zero is shifted into the least significant digit.

RSH X mantissa is right shifted while leaving the decimal point in the same position. The link digit, which is normally zero except after a LSH, is shifted into the most significant digit. The least significant digit is lost.

NOOP Null command (NOP), used for terminating digit entry.

Does not push the stack.

TERM Table terminator, used by system software to detect the end of the command string.

The trigonometrical functions SIN, COS and TAN assume that the contents of the X register is in degrees.

Table 7.11.2: Equates for RWC-MATH Command Codes

```
NOTE THAT THE DOUBLE BYTE COMMANDS SHOULD
         BE GENERATED USING THE 'DW' ASSEMBLER
         COMMAND.
YPX
         EQU
                  39H
                              X<-Y+X, Y<-Z, Z<-T, T<-0
                              X<-Y-X, Y<-Z, Z<-T, T<-0
         EQU
                  SAH
YMX
                              X<-Y*X, Y<-Z, Z<-T, T<-0
YTX
         EQU
                  3BH
                  3CH
                            ; X<-Y/X, Y<-Z, Z<-T, T<-0
YDX
         EQU
                              X<-Y**X, Y<-Z, Z<-T, T<-0
YTOX
         EQU
                  38H
                            ;
MPX
         EQU
                  3920H
                              MC-M+X
         EQU
                  3A20H
                              M \leftarrow M - X
MMX
MTX
         EQU
                  3B20H
                              M \subset -M \times X
MDX
         EQU
                  3C20H
                              MC-M/X
         EQU
                  37H
                              X<-1. 0/X
ODX
         EQU
                  34H
                              X<-X**0.5
SQRT
                  33H
                              X<-X**2
         EQU
SQ
TENX
         EQU
                  32H
                              XC-10. 0**X
         EQU
                  31H
                              X<-E**X
EX
                              X<-LN
         EQU
                  35H
LN
                              XC-LOG X
         EQU
                  36H
LOG
                  24H
                              XC- SIN X
SIN
         EQU
COS
                              XC- COS X
         EQU
                  25H
         EQU
                  26H
                              X<-TAN X
TAN
                  2420H
                              XC-ARCSIN X
ISIN
         EQU
         EQU
                  2520H
                              XC-ARCCOS X
ICOS
                              XC-ARCTAN X
ITAN
         EQU
                  2620H
                              X<-RAD X
RAD
         EQU
                  2DH
         EQU
                  2CH
                              X<-DEG X
DEG
                              DECIMAL POINT POSITION
                  OAH
         EQU
DP
                              FOLLOWING DIGITS ARE EXPONENT
EE
         EQU
                  OBH
                              CHANGE MANTISSA OR EXPONENT SIGN
CS
         EQU
                  OCH
EN
         EQU
                  21H
                              TC-Z, ZC-Y, YC-X ; END DIGIT ENTRY.
                              TOGGLE MODE (SCIENTIFIC <-> FP)
TOGM
         EQU
                  22H
                              SET MANTISSA DIGIT COUNT
SMDC
         EQU
                   18H
                              FOLLOWING BYTE MUST CONTAIN
                                  REQUIRED MANTISSA DIGIT COUNT.
                              MASTER CLEAR: X, Y, Z, T, MC-O;
MCLR
         EQU
                   2FH
                                               ERR FLAG<-0; MDC<-8;
                                              MODEK-FLOATING POINT.
                              ERR FLAGC-0
                  2BH
ECLR
         EQU
                              X<-Y, Y<-Z, Z<-T, T<-0
POPS
         EQU
                   2EH
         EQU
                   23H
                              X \leftarrow Y, Y \leftarrow Z, Z \leftarrow T, T \leftarrow X
ROLL
                   30H
                              X<->Y
XEY
         EQU
                              X < -> M
                   1BH
         EQU
XEM
                              MC-X
                   1CH
MS
         EQU
                              X<-M
MR
         EQU
                   1DH
                                                X<-3, 1415927
         EQU
                   ODH
PI
                              LEFT SHIFT MANTISSA OF X
LSH
         EQU
                   1EH
                              RIGHT SHIFT MANTISSA OF X
                   1FH
RSH
         EQU
                              NULL COMMAND (NOP), TERMINATES
         EQU
                   3FH
NOOP
                                    DIGIT ENTRY.
OUTT
         EQU
                   0016H
                              MULTIDIGIT OUTPUT FROM X
                              TABLE TERMINATOR
         EQU
                   OFFH
TERM
```

Number Entry

When a digit (0 - 9), decimal point (DP), or π (PI) is entered into the number processor via RIC Port 0, the stack is first pushed and the X register cleared:

$$X \leftarrow 0$$
, $Y \leftarrow X$, $Z \leftarrow Y$, $T \leftarrow Z$

This process is referred to as "initiation of number entry". Following this, that digit and the following digits are entered into the X mantissa. Subsequent entry of digits, DP, EE or CS commands do not cause initiation of number entry. Digits following the eighth mantissa digit are ignored. This number entry mode is terminated by any command except 0-9, DP, EE, CS, or PI.

Termination of number entry results in the following:

- the entered number is normalized by adjusting the exponent and decimal point position, so that the decimal point is to the right of the first mantissa digit.
- the next digit, DP, or PI entered will cause initiation of number entry, as already described.

Arguments can be entered as decimal, floating point, or a combination of both.

Result Output

There are two possible modes of operation for the OUTT instruction, which reads back the results of the execution of a command string from the X register:

Decimal notation, which transfers mantissa digits, a mantissa sign digit, and a decimal point position digit.

Scientific notation, which transfers mantissa digits, 2 exponent digits, and a digit containing mantissa and exponent sign bits.

The decimal point is always to the right of the first mantissa digit.

Initially the number processor output is in the decimal notation (after MCLR command). The TOGM command toggles from any current mode to the opposite mode. The number of mantissa digits output is equal to the mantissa digit count (MDC). The MDC is initially 8 and can be set to any value from 1 to 8 using the SMDC command. Output digits are in BCD, and are read via RIC Port 1 Bits 0 to 3.

After execution of the OUTT command, the number processor periodically strobes each data digit into RIC Port 1. This data is output synchronously, and must be read from RIC Port 1, as soon as its service request signal (RIC Port 2 Bit 0) becomes active. Each data digit remains at RIC Port 1 for approximately 125µs after Port 1 service request signal becomes active. This service request signal can be made to generate an interrupt via jumper selection, or it can be software scanned. In either case, it is essential to read RIC Port 1 within the above time limit. The general purpose Real-World read subroutine RDRWC is too slow for reading this data. A simplified read routine is illustrated in the programming example in Section 7.11.5. DCE CPU interrupts should be disabled during the read sequence.

Table 7.11.3 shows the format of output data from the number processor, in decimal notation, read via RIC Port 1. Bits 0 to 3 give the mantissa sign indication word (0 = positive, 8 = negative), decimal point indication word (11 to 12 - MDC) and the individual mantissa digits (each 0 to 9). DP POS takes values from B (hex) to 11-MDC (= 3 normally). If for example, DP POS = 9, the decimal point is located to the right of the third most significant mantissa digit.

Table 7.11.3: Output Data Format for Decimal Mode

Address Bits	DP	BCD Data Digits
b7 - b4	Position (hex)	b3 b2 b1 b0
2		S _m 0 0 0
3		DP POS
4	В	Most significant mantissa digit
5	A	
6	9	
MDC + 3	12-MDC	Least significant mantissa digit

Table 7.11.4: Output Data Format for Scientific Mode

Address Bits	BCD Data Digits
b7 - b4	b3 b2 b1 b0
0	Most significant exponent digit
1	Least significant exponent digit
2	S _m 0 0 S _e
3	not used
4	Most significant mantissa digit (decimal point follows this digit)
MDC + 3	Least significant mantissa digit

Notes:

MDC = Mantissa digit count, set by SMDC command;

= 8 initially.

S_m = Sign of mantissa : 0 = positive, 1 = negative.

S_e = Sign of exponent : 0 = positive, 1 = negative (S_e = 0 in decimal mode).

DP POS = Decimal point position indicator for Decimal mode.

Takes values from 11 down to 12 - MDC, which
indicates a digit as given by the DP column in
Table 7.11.3. The decimal point is located to the
right of this digit.

The following sequence is an example of an output data string read in decimal mode (MDC = 8). The values indicate the contents of RIC Port 1 Bits 0 - 3, for each output character received from the number processor (MDC = 8):

Table 7.11.4 shows the format of output data from the number processor, in scientific notation, read via RIC Port 1. Bits 0 to 3 give the two exponent digits, mantissa and exponent sign indication word, and the individual mantissa digits. The decimal point is always located to the right of the most significant mantissa digit. The mantissa and exponent sign indication word can have the following values:

```
0 (hex) : mantissa + ; exponent +
1 : mantissa + ; exponent -
8 : mantissa - ; exponent +
9 : mantissa - ; exponent -
```

The following sequence is an example of an output data string read in scientific mode (MDC = 8). It is the output from the same internal result as in the last example.

0 1 9 - 2 5 7 8 7 4 3 4
$$(=-2.5787434 \times 10^{-1})$$

Error Conditions

Several commands to the number processor have conditions which will cause an error. When such an error occurs, the number processor sets an Error Flag, which can be read via RIC Port 2 Bit 4.

The error conditions are as follows:

- 1) LN X, LOG X, when $X \leq 0$
- 2) any result $< 10^{-99} \text{ or } \ge 10^{100}$
- 3) TAN 90°, 270°, 450°, etc.
- 4) SIN X, COS X, TAN X, when $|X| \ge 9000^{\circ}$
- 5) ISIN X, ICOS X, when |X| > 1 or $|X| \le 10^{-50}$
- 6) SQRT X, when X < 0
- 7) YDX, MDX, ODX, when X = 0
- 8) In decimal mode OUTT instructions, if the number of mantissa digits to the left of decimal point is > mantissa digit count.

The number processor sets the error flag only during the command which gave rise to the error condition. Therefore it is necessary to scan the error flag from RIC Port 2 Bit 4, while sending commands to the number processor, to ensure the detection of intermediate error conditions. One way to realize such a scheme is to store the status word read from RIC Port 2, at the beginning of the result buffer, and to set Bit 4 in it if the error flag becomes active at any time during the execution of the command string. Once the complete result has been stored in the result buffer by the appropriate subroutine, the main program can test Bit 4 of this status word to check the validity of the contents of the result buffer, before processing the result. If the error bit in this status word is set, the main program must clear it before initiating input of the next command string. An example of such a scheme is found within subroutine MATO in the test program given in Section 7.11.5.

Command Execution Times

Table 7.11.5 shows the execution times of each command. These times are shown in microcycles. One microcycle has a value equal to 10 µs. The execution of a single command by the number processor involves thousands of such microcycles.

Command	Executio	n Time in
Mnemonic	Micr	ocycles
	average	worst-case
0 - 9		238
DP		152
EE		151
CS		166
PI		1312
SMDC		163
XEM		812
MS		839
MR		1385
LSH		168
RSH		173
EN		552
TOGM		157
ROLL		905
ECLR		163
POPS		448
MCLR		734
XEY		652
NOOP		122
OUTT		583
		BASE IS CELLS

Command	Execution	Execution Time in			
Mnemonic	Micr	ocycles			
	average	worst-case			
CINI	5/200	05000			
SIN	56200	95900			
COS	56200	95900			
TAN	35000	97600			
ISIN	54000	93900			
ICOS	54000	93900			
ITAN	30200	92900			
LN	24800	92000			
LOG	30700	92600			
EX	30800	93900			
TENX	27400	96500			
YPX	2200	6600			
YMX	2200	6600			
MPX	1700	5000			
MMX	1700	5000			
YTX	3200	22700			
MTX	2700	21400			
YDX	7800	22300			
MDX	7300	21100			
ODX	4500	22800			
YTOX	55400	95500			
SQRT	7000	30200			
SQ	3000	21900			
RAD	9600	41700			
DEG	9600	41700			

Table 7.11.5 : Number Processor Command Execution Times

Note: 1 microcycle has a value of 10 µsec.

RWC-MATH RIC / DCE-BUS Protocol

Initialization

First initialize the RWC-MATH module RIC by writing control word 0AEH to its Command Register. This will configure the three RIC ports as required.

Initialize the number processor by setting RIC Port 0 Bit 6 to logic one, and then to logic zero. This will reset the number processor.

Enable the two service request interrupt signals associated with RIC Ports 0 and 1, by setting RIC Port 2 Bits 2 and 6 to logic one.

Send out a NOOP command to the number processor via RIC Port 0, and then perform a dummy read operation to RIC Port 1, to clear the internal logic of the number processor. Clear the status byte at the start of the result buffer, if present. Set up a dummy command string containing several NOOP commands and a MCLR command. Send this command string to the number processor, and then read back the dummy output data from it as explained below. The number processor is now ready to perform calculations.

Subroutine 'MATHI' within the program given in Section 7.11.5, is an example of a RWC-MATH initialization routine.

Performing Calculations

Set up a command string with BCD data digits and command codes as desired. Wait until the number processor is ready to accept an input character. This can be detected either by polling the service request signal for RIC Port 0 (Port 2 Bit 3), or by causing it to generate a CPU interrupt by jumper selection. Send the entire command string to the

number processor, a character at a time in this manner, until the table terminator FF is detected.

The results of any calculation can be read back from the X register of the number processor, by outputting an OUTT command to it. The number processor will then send the results synchronously to RIC Port 1, one character at a time. When reading the results from the number processor, wait until each character is loaded into RIC Port 1. This can be detected either by polling the service request signal for RIC Port 1 (Port 2 Bit 0), or by causing it to generate a CPU interrupt by jumper selection. When the number processor has output the entire result, it will be ready to accept an input character, and the service request signal for RIC Port 0 will become active.

Subroutine 'MATH' within the program given in Section 7.11.5, is an example of an interface routine illustrating input and output to the number processor, for polled operation.

For interrupt driven operation, the two service request signals for RIC Ports 0 and 1 are merged into a single interrupt request jumper connectable to one of the two interrupt request lines on the DCE-BUS. The interrupt service routine must test Bits 0 and 3 of RIC Port 2 to determine the interrupt source.

7.11.4.3 User Options

Interrupt Generation Jumpers

The two service request interrupt signals for RIC Ports 0 and 1 are merged together and brought to jumper pad J1. It may be linked to pad J2 or J3, for connection to the DCE-BUS interrupt request line IN7 or EXINTR respectively.

The RWC-MATH module is usually delivered without any jumper connection.

7.11.4.4 Module Connector Definitions

System Connector

See Section 6.1.1 for the pin definitions.

Device Connector

There is no device connector on the RWC-MATH module.

7.11.4.5 Operational Requirements

Power Requirements

The RWC-MATH module requires two power supplies from the DCE-BUS. The values given below are for the quiescent state. Active state values are typically 20% higher.

+ 5V : 120mA

- 5V : 40mA

Environmental Requirements

Operating temperature : 0°C to 55°C

Storage temperature : -25°C to +85°C

Relative humidity : upto 95% noncondensing

Bus Loading

The RWC-MATH module presents 1 unit load to the DCE-BUS (see Section 4.4).

7.11.5 TEST PROCEDURE

This section defines a simple test configuration and a test program for performing a basic functional test on the RWC-MATH module. Users are advised to carry out such a test procedure when necessary to establish the correct functioning of a module. The test program also provides a good example of RWC-MATH module driver software.

Test Configuration

The following test program requires a RWC-MATH module, a DCE microcomputer, UPT Utility software package (version 2.0), a rack, power supply and a TTY or equivalent. The RWC-MATH module address select switch should be set to '4'. The program is entered from the Utility, and returns to the Utility at the end.

The program contains a test command string to perform the following calculation :

$$12.34 + 1234 \times 10^{-2}$$

On return to the Utility, the answer in decimal notation will be stored in the result buffer with start address RESLT + 1. The end of the answer field is indicated by a byte containing FF. The location RESLT is used to store the status byte read from RIC Port 2, containing the error flag etc. On return to the Utility, the contents of the RESLT buffer can be examined by the command:

D1043 104E (display RESLT to RESLT + 11)

The following values will then be displayed on the console device :

CC 00 0A 02 04 06 08 00 00 00 00 FF

This represents the correct answer +24.68, in decimal notation.

The command string can be easily changed via the Utility, for other desired test computations.

```
EQUATES FOR RWC-MATH COMMAND CODES.
                         NOTE THAT THE DOUBLE BYTE COMMANDS SHOULD
                         BE GENERATED USING THE 'DW' ASSEMBLER
                         COMMAND.
                                             ; X<-Y+X,Y<-Z,Z<-T,T<-0
0039
                YFX
                         EQU
                                   39H
                                            ; X<-Y-X, Y<-Z, Z<-T, T<-0
                YMX
                         EQU
                                   SAH
003A
                                            ; X<-Y*X,Y<-Z,Z<-T,T<-0
                         EQU
                                   3BH
003B
                YTX
                                            ; X<-Y/X, Y<-Z, Z<-T, T<-0
                YDX
                         EQU
                                   3CH
0030
                                              X \leftarrow Y \times X, Y \leftarrow Z, Z \leftarrow T, T \leftarrow 0
                         EQU
                                   38H
0038
                YTOX
3920
                MPX
                         EQU
                                   3920H
                                               M \leftarrow M + X
                MMX
                         EQU
                                   3A20H
                                               M \leftarrow M - X
3A20
                         EQU
                                   3B20H
                                               M<-M*X
3B20
                MTX
                                              MC-M/X
                                   3020H
3020
                MDX
                         EQU
                                               X<-1. 0/X
                ODX
                         EQU
                                   37H
0037
                                               X<-X**0.5
0034
                SORT
                         EQU
                                   34H
                                   33H
                                               X<-X**2
0033
                SQ
                          EQU
                          EQU
                                   32H
                                               XC-10. 0**X
0032
                TENX
                                               X \leftarrow E * * X
                EX
                          EQU
                                   31H
0031
                                              XC-LN X
0035
                LM
                          EQU
                                   35H
                                             ; XK-LOG X
0036
                LOG
                          EQU
                                   36H
                                   24H
                                             ; XC- SIN X
0024
                SIN
                          EQU
                                               XC- COS X
                          EQU
                                   25H
                COS
0025
                                             ; X<-TAN X
                                   26H
0026
                TAN
                          EQU
                                               XC-ARCSIN X
                ISIN
                          EQU
                                   2420H
2420
                                               XC-ARCCOS
                                   2520H
                ICOS
                          EQU
2520
                                               XC-ARCTAN X
                          EQU
                                   2620H
                 ITAN
2620
                                               XC-RAD X
                                   2DH
                          EQU
                RAD
002D
                                               XC-DEG X
                          EQU
                                   2CH
                DEG
0020
                                               DECIMAL POINT POSITION
                                    OAH
                 DP
                          EQU
000A
                                               FOLLOWING DIGITS ARE EXPONENT
                          EQU
                                    OBH
                 EE
OOOB
                                               CHANGE MANTISSA OR EXPONENT SIGN
                                    OCH
                          EQU
                 CS
0000
                                               TC-Z, ZC-Y, YC-X ; END DIGIT ENTRY.
                          EQU
                                    21H
                 EN
0021
                                               TOGGLE MODE (SCIENTIFIC <-> FP)
                          EQU
                                    22H
0022
                 TOGM
                                               SET MANTISSA DIGIT COUNT
                 SMDC
                          EQU
                                    18H
0018
                                               FOLLOWING BYTE MUST CONTAIN
                                                   REQUIRED MANTISSA DIGIT COUNT.
                                               MASTER CLEAR:
                                                                X, Y, Z, T, MC-O;
                 MCLR
                          EQU
                                    2FH
002F
                                                                ERR FLAGK-0; MDCK-8;
                                                                MODEK-FLOATING POINT
                                               ERR FLAGK-0
                                    2BH
                          EQU
                 ECLR
002B
```

```
2EH ; X<-Y, Y<-Z, Z<-T, T<-0
             POPS
002E
                     EQU
                             23H ; XC-Y, YC-Z, ZC-T, TC-X
                     EQU
0023
             ROLL
                                   ; X<->Y
             XEY
                     EQU
                             30H
0030
                     EQU
                           1BH
                                   ; X<->M
001B
             XEM
                                    ; MC-X
             MS
                     EQU
                            1CH
001C
             MR
                     EQU
                            1DH
                                    ; X<-M
001D
                                                     XC-3, 1415927
OOOD
             PI
                     EQU
                            ODH
             LSH
                     EQU
                            1EH
                                    ; LEFT SHIFT MANTISSA OF X
001E
                            1FH
                                    ; RIGHT SHIFT MANTISSA OF X
             RSH
                     EQU
001F
                                    ; NULL COMMAND (NOP), TERMINATES
                     EQU
                             3FH
003F
             NOOP
                                           DIGIT ENTRY.
                            16H
                                   ; MULTIDIGIT OUTPUT FROM X
0016
             OUTT
                    EQU
                            OFFH ; TABLE TERMINATOR
                     EQU
OOFF
             TERM
                     TEST PROGRAM FOR MATH MODULE ROUTINES
                             (POLLED OPERATION)
                     MODULE ADDRESS SWITCH SET TO '4'.
                     ORG 01000H
1000
                           SP, STACK
                     LXI
1000 316B10
                     MVI A, 040H ; INIT MATH CARD
1003 3E40
1005 CDE010
                     CALL
                            MATHI
                             H, CMDS ; ADDRESS COMMAND STRING
                     LXI
1008 211610
                           D, RESLT+1 ; ADDRESS RESULT AREA
100B 114410
                     LXI
                            A, 040H ; RWC ADDR
100E 3E40
                     MVI
                                    ; PERFORM FUNCTION
                     CALL
                           MATH
1010 CD6B10
                     JMP
                           O ; RETURN TO MONITOR
1013 C30000
                                    ; EXAMPLE COMMAND STRING:
                    DB
                            1, 2, DP, 3, 4, EN ; = 12, 34
1016 01020A03 CMDS:
101A 0421
                            1, 2, 3, 4, EE, 2, CS; = 1234 * 10**-2 (= 12.34)
                     DB
1010 01020304
1020 OB020C
1023 39FF
                     DB
                             YPX, TERM
                             30 ; LEAVE SOME SPACE
                     DS
1025
                                 ; RESULT BUFFER
                    DS
                             20
1043
             RESLT:
                     DS
                             20
1057
                    EQU
             STACK
106B
```

	;				
	1	EQUATE:	3		
0008 0001 0001 1C02 031E 0349	INTRO INTR1 GICP1 GICP2 RDRWC WRRWC	EQU EQU EQU EQU EQU	08H 01H 1 1C02H 031EH 0349H	;	MASK FOR PORT O INTERRUPT MASK FOR PORT 1 INTERRUPT USED IN GICC MACRO
		MATH - (POLLED	MATH MOD OPERATI	ON	E INTERFACE ROUTINE
	;	ACC - R H,L - S D,E - S	TART ADD	SS RE	IN HIGH ORDER 4 BITS SS OF COMMAND STRING SS FOR RESULT
106B F5 106C C5 106D D5 106E E5	MATH:	PUSH PUSH PUSH PUSH	PSW B D H	į	SAVE ALL REGISTERS
106F 47	,	MOV	В, А	;	SAVE RWC ADDRESS
1070 CDB710	,	CALL	МАТО	;	OUTPUT COMMAND STRING
1073 21B410 1076 CDB710	,	CALL			SEND OUT 'OUTPUT' REQUEST COMMAND
1079 3E90 107B 32031C	+	GICC	2,0	;	INITIALIZE THE GIC FOR INPUT
				;	FOLLOWING CODE READS THE SYNCHRONOUS OUTPUT FROM NUMBER PROCESSOR
107E 21021C 1081 36FF 1083 78 1084 F602 1086 2B 1087 77 1088 01FFFB		LXI MVI MOV ORI DCX MOV LXI	M, OFFH A, B 2 H	;;;;;	REAL WORLD CONTROL DISABLE CONTROL LINES GET RWC ADDRESS SELECT RIC PORT 2 ADDRESS REG 1 RWC ADDRESS SET UP RIC PORT 2 ADDRESS ; CONTROL BYTES

```
MAT1:
108B 23
                             H ; ADDRESS CONTROL
M, B ; READ ACTIVE
                      INX
108C 70
                      LDGI
                             O ; READ RIC PORT 2 DATA
108D 3A001C
1090 71
                      MOV
                             M,C ; DISABLE READ
H ; BACK TO ADDRESS PORT
1091 2B
                      DCX
1092 E609
                              INTRO+INTR1 ; POLL INTERRUPTS
                      ANI
1094 CA8B10
                     JZ
                              MAT1 ; LOOP UNTIL CHAR READY
1097 E608
                     ANI
                             INTRO ; TEST WHICH INTERRUPT
1099 C2AC10
                             MAT2 ; JUMP IF END OF OUTPUT
                      JNZ
1090 35
                      DCR
                                  ; ADDRESS PORT 1 RWC
109D 23
                             H
                                   ; CONTROL PORT 2
                      INX
109E 70
                             M, B ; ENABLE READ
                      MOV
                     LDGI
                             0
                                     ; READ RIC PORT 1
109F 3A001C
10A2 71
                     MOV
                             M, C
                                     ; DISABLE READ
10A3 2B
                     DCX
                             H ; ADDRESS RWC ADDRESS
10A4 34
                                     ; RESELECT RIC PORT 2
                     INR
                             M
10A5 E60F
                     ANI
                             OFH
                                     ; CLEAR ADDRESS BITS FROM DATA
10A7 12
                     STAX
                             D
D
                                     ; STORE IN RESULT BUFFER
10A8 13
                     INX
                                     ; ADDRESS NEXT CHAR
10A9 C38B10
                     JMP
                             MAT1
10AC 3EFF
             MAT2: MVI
                           A, TERM ; SET TERMINATION FLAG
10AE 12
                     STAX
10AF E1
                     POP
                             H
10B0 D1
                     POP
                             D
                                     ; RESTORE REGISTERS
10B1 C1
                     POP
                             B
10B2 F1
                     POP
                             PSW
10B3 C9
                     RET
                                     ; RETURN TO CALLER
10B4 1600FF MATOI: DB
                            OUTT, O, TERM
                                     ; COMMAND STRING TO GET OUTPUT DATA
                                     ; FROM X REGISTER OF NUMBER PROCESSOR.
                     MATO - OUTPUT STRING TO MATH MODULE
                     INPUT PARAMETERS:
                     B - RWC ADDRESS (H. O. 4 BITS)
```

H, L - ADDRESS OF STRING TO BE OUTPUT (TERMINATED

BY 'TERM' CHARACTER)

	FEFF	MATO:	MOV CPI RZ	A, M TERM	;	SEE IF ALL OF STRING HAS BEEN SENT EXIT IF NO MORE
10BB 10BC	F602	•	ORI	2	;	SELECT RIC PORT 2
10BE	320110	+	STGI	GICP1		
1001	CD1E03		CALL	RDRWC	;	READ STATUS ERROR FLAG MUST BE CHECKED AFTER EACH OPERATION IN COMMAND STRING.
10C8 10CA	3A4310 E610 B1		LDA ANI ORA	10H C	; ;	RESULT STATUS FLAG BYTE CLEAR ALL EXCEPT ERR BIT ADD TO NEW STATUS
10CE 10CF	324310 79 E608 CAB710		STA MOV ANI JZ	A, C INTRO	;	RESTORE RELOAD NEW STATUS LOOP UNTIL NUMBER PROCESSOR READY FOR NEXT CHARACTER.
10D4 10D5	78	; +	MOV STGI	A, B GICP1	į	STORE PORT O ADDRESS
		,	INX	H WRRWC	;	LOAD NEXT COMMAND OR DATA ADDRESS NEXT CHAR. OUTPUT COMMAND LOOP FOR NEXT
		;	MATHI -	MATH MO	DU	LE INITIALIZATION ROUTINE
		; ; ;	ACC - R	ARAMETER WC ADDRE IN LOWE	SS	IN UPPER 4 BITS 4 BITS
		;	NO REGI	STERS DE	ST	ROYED
10E0 10E1 10E2 10E3	D5 C5	MATHI:	PUSH PUSH PUSH PUSH	H D B PSW	i	SAVE ALL REGISTERS
10E4	47	,	MOV	в. А	;	PUT RWC ADDR IN B

10E5 F603		ORI	3		
10E5 F603	+	STGI		;	SELECT RIC COMMAND REGISTER
10E7 32011C					
10EA 3EAE					CONFIGURE PORT O AS H. S. O/P,
10EC CD4903		CALL	WRRWC		PORT 1 AS H. S. I/P, PORT 2 BITS 4,5 AS I/P.
	;				
10EF 78	+		A, B GICP1	,	ADDRESS PORT O
10F0 32011C		0,01	010.1		
10F3 3E40		MUT	A. 040H	;	SET THE POWER ON RESET LINE OF
10F5 CD4903		CALL	WRRWC	;	MATH MODULE HIGH
	,			;	REMOVED LATER DURING INPUT.
10F8 78		MOV	A, B		
10F9 F603	+	ORI STGI	GICP1	;	ADDRESS COMMAND REG
10FB 32011C					
10FE 3E05		MUT	A, 05H	;	SET INTRO ACTIVE
1100 CD4903		CALL	WRRWC		
1103 3E0D 1105 CD4903		MVI	A, ODH WRRWC	i	SET INTR1 ACTIVE
1103 CB4703		Onec	With		(PORT 2 BITS 2 AND 6 CONTROL INTRO AND INTR1 RESPECTIVELY)
1100 70	;	MOV	A, B		
1108 78	+	STGI		j	ADDRESS PORT 0
1109 320110					
110C 3E3F		MVI	A, NOOP	;	SEND OUT NOP TO NUMBER PROCESSOR
110E CD4903		CALL	WRRWC		
1111 78		MOV	A, B		
1112 3C		INR	A CTCD1	j	ADDRESS PORT 1
1113 32011C	+	STGI	GILFI		
		CALL	pppuc		DUMMY READ PORT 1
1116 CD1E03	;	CALL	KDKWC	,	BOTHT READ FORT
1119 AF		XRA	A		ZERO RESULT STATUS BYTE
111A 324310	,	STA			
111D 212D11					MASTER CLEAR SEQUENCE
1120 114410 1123 3E40		LXI	D, RESLT	+1	
1123 3E40 1125 CD6B10		CALL	MATH		

1128 F1 POP PSW 1129 C1 POP B ; RESTORE REGISTERS 112A D1 POP D POP H 112B E1 112C C9 RET 112D 3F3F3F 1130 2F3FFF NOOP, NOOP, NOOP CLEAR: DB MCLR, NOOP, OFFH ; MASTER CLEAR DB 0000 END

7.11.6 ORDERING INFORMATION

RWC-MATH: Standard Version

7.12 RWC-CO4: ISOLATED ANALOG CURRENT OUTPUT

7. 12. 1 FUNCTIONAL DESCRIPTION

The RWC-CO4 Real-World interface module provides four identical isolated channels for outputting precise analog currents under DCE program control. Each current output channel has a range of 4 to 20mA, definable with a digital resolution of 16 bits. The 4 current output channels are independent, and each given current value is held stable until changed by DCE software.

This module has the unique feature of total isolation between each analog channel and the DCE system. To ensure complete isolation, the drive voltage for each current generating channels is derived from the connecting device's base supply. The module is ideal for precision control environments where industrial noise and ground loops make such control difficult.

Each module has an identification address defined by a hexadecimal switch and up to fifteen cards may be directly connected to the DCE-BUS.

7.12.2 FEATURES

- 4 identical simultaneous independent current output channels.
- 4 to 20mA programmable current outputs with 16-bit digital resolution.
- total opto-isolation between each analog output channel and DCE system.
- each channel current output held stable until changed to a new value.
- o drive voltage for each output channel derived from the connecting device's base supply.
- standard hardware and software interface to the DCE-BUS.
- selectable card address.
- single 100 x 160mm eurocard format.

7. 12. 4 SYSTEM DESIGN PARAMETERS

7.12.4.1 Hardware Configuration

The functional block diagram in Section 7.12.3 illustrates the hard-ware configuration. The module does not use a single device RIC for interfacing to the DCE-BUS. The RWC-CO4 module works on the principle of modulating the duty cycle of a square wave, averaging the voltage at the other side of an opto-isolator, and linearly converting to the equivalent analog current in the range 4 to 20mA.

The module has two programmable timer-counter devices (8253), each with three independent 16-bit counters CO, C1, C2. The period for all the counters is derived from counter CO of device 1. This overall period as well as the pulse widths of the generated square waves (via counters C1, C2 and C0, C1 of device 1 and 2 respectively), can be independently software programmed.

The RWC-CO4 module contains the hardware logic to realize the multiple vectored interrupt scheme on the DCE-BUS, described in Section 4.3.2.

7. 12. 4. 2 Programming Specifications Zie och Mcompolor interfacing

The RWC-CO4 module is addressed via the standard DCE-BUS interface. Programming specifications for driving the DCE-BUS are given in Section 4.1.

The module does not have the usual single device RIC interface to the DCE-BUS. In addition to the 4-bit card address and the 2-bit register address, it also requires a 2-bit device address for the two timer-counters. The 8-bit card/device address received from GIC Port 1 via the DCE-BUS, is interpreted as follows:

b7 - b4 = card select address (1 to F)

b3 - b2 = device select address (1 to 2)

bl - b0 = internal register select address within

selected device (1 to 4)

For module activation, the card select address must correspond to the setting of the hexadecimal address switch on the module. The two device select address bits individually enable timer-counter devices 1 and 2, when the module is correctly addressed. The register select address bits select 1 out of the 4 internal registers within each timer/counter device.

Device/Counter Addresses

The two timer-counter devices on the module each has a Control Word Register and three counters. The functional definition of each timer-counter device is software programmable. A control word must be sent to these devices to initialize each counter with the desired Mode and quantity information.

The table 7.12.1 indicates the addressing necessary for the relevant operations.

The table 7.12.2 shows the Mode Word values for defining the operation modes of Counters CO, C1, C2 on each timer-counter device. These must be used for configuring the corresponding Counters during module initialization.

During module initialization, the period for all the channels is set to a constant value by writing a 16-bit count value to Counter CO of device 1 (least significant 8-bits must be written first). The duration of each pulse (duty cycle) is then programmed to provide the required analog output by writing a 16-bit counter value to the Counter associated with that output channel. The table 7.12.3 specifies the Counter associated with each analog output channel.

ADDRESS FOR TIMER-COUNTER 1 (HEX)	ADDRESS FOR TIMER-COUNTER 2 (HEX)	RD	WR	OPERATION
out 40 period	007 Y4 (H3	1	0	Load counter CO
007 Y1 CH1	001 Y5 CH4	1	0	Load counter Cl
007 Y2 CH2	got y6 INTOFH	1	0	Load counter C2
0 07 Y3 HORE 1991	OUT Y7 MUNERTY	1	0	Write mode word
ZX	ZX	X	X	Data Bus in 3-state

Notes:

- 1. Y is the card address select switch setting in hex (1 to F).
- 2. Z is any number other than Y.
- 3. X means don't care.
- 4. Bits 2 and 3 are used directly for timer-counter device enable.
- 5. RDRWC and WRRWC software routines provide the RD and WR signals accordingly.

Table 7.12.1 : Device/Counter Address Table for RWC-CO4

COUNTER	TIMER-COUNTER 1 MODE WORD (HEX)	TIMER-COUNTER 2 MODE WORD (HEX)
C0	mole 2 -> 34 or 3C	32 not 1
Cl	72 mole 1	72 mole 1
C2	B2	B4 or BC

Table 7.12.2 : Mode Word Value Table

ANALOG OUTPUT CHANNEL NO.	TIMER-COUNTER 1 COUNTER	TIMER-COUNTER 2 COUNTER
1	€1	
2	C2	-
3	-	C0
er 4		C ₁
Period Generator	C 0	
Interrupt Generator	-	C 2

Table 7.12.3 : Analog Output Channel - Counter Relationship

Format of Data

The data for the various counters must be 2 bytes wide and in binary.

The data should be written with the least significant byte first, followed by the most significant byte.

Special Considerations

The values in the counters corresponding to the 4 analog output channels must never be equal to or greater than the counter value in the period counter (CO in device I).

The systems software must program each counter of the timer-counter devices with the mode and quantity desired. Writing out the Mode control word can be in any sequence for the three counters. This operation should be followed by the loading of the actual count value into the selected counter register, with the least significant byte first.

The two-byte value to be loaded into the counter register does not have to follow the associated Mode control word. They can be programmed at any time following the Mode control word, as long as the two bytes are loaded in the correct order.

If the Mode word for a timer-counter device is to be changed, it must be done after two successive Read operations to clear the internal control logic of the device.

Notes on the Usage of RWC-CO4

The four output current channels are polarized, and their signal lines must carry the connecting device's base supplies with a suitable load resistance (see Section 7.12.4.5). The optimum effective load resistance for a given supply voltage shown in Figure 7.12.1, ensures minimum power dissipation resulting in low drift and stable operation while producing the 4-20 mA range.

A resistance lower than this optimum value may be used for a given supply voltage to produce the same 4-20 mA current output range. But, this will cause higher heat dissipation on the current drivers, which could cause drift and lower stability.

A resistance higher than the above optimum value will lower the upper limit of the output current. The current range will then be from 4 mA to a value less than 20 mA.

The output current corresponding to a particular digital number loaded into a channel counter will be independent of the operating point on the load resistance - supply voltage curve.

The following setting is used for testing the RWC-CO4 module in the factory. Other settings may be used if desired.

- C0 of Timer-Counter 1 = 5600H (initialization)
- writing 0500H to any channel will produce 4 mA output
- writing 4500H to any channel will produce 20 mA output.

This setting gives a count range of 4000H for the 16 mA range, and 1 mA output for 0400H step. These settings are recommended to ensure linearity.

7.12.4.3 <u>User Options</u>

The RWC-CO4 provides the facility for software programmable time interval interrupt generation. The signal is derived from counter C2 of device 2, and may be connected to the IN7 or EXINTR interrupt requests on the DCE-BUS via a jumper network.

Alternatively, it is possible to jumper select an interrupt request in synchronisation with the trigger pulse for the four analog channels, provided by counter CO of device 1.

See the Functional Block Diagram in Section 7.12.3 for details of jumper connections.

7.12.4.4 Module Connector Definitions

System Connector

See Section 6.1.4 for the pin definitions.

Device Connector (25-pin D-type female)

Pin Number	Signal
1	Channel 3 +
2	Channel 3 -
6	Channel 2 +
7	Channel 2 -
12	Channel 1 +
13	Channel 1 -
22	Channel 0 -
23	Channel 0 +

7. 12. 4. 5 Operational Requirements

Signal Characteristics

The four output analog channels are polarized, and their signal lines must carry the connecting device's base supplies necessary for deriving the current generating channel drive voltages.

The diagram below illustrates one method of connecting the base voltages and signal lines to the module:

The above scheme provides a voltage output (V_0) with respect to the positive rail. By connecting the load resistance on the other side of V_s , it is possible to get a voltage output with respect to the negative rail.

Power Requirements

The RWC-CO4 uses a single +5V supply available on the DCE-BUS, for the digital configuration. Typical consumption is 240mA.

The base voltages necessary for deriving the current generating channel drive voltages must be provided by the connecting devices, as shown before. The base voltage should not exceed 50V. The graph below defines the optimum load resistance (R_L) in $K\Omega$ for a particular supply voltage. Note that the load resistance is the sum total of the resistances on the lines (load resistance + d. c. resistance of transmission line).

 $\frac{\text{Figure 7.12.1}}{\text{vs Supply Voltage }(\text{V}_{\text{S}})}$

Environmental Requirements

Operating temperature : 0°C to 55°C

Storage temperature : -25°C to +85°C

Relative humidity : 95% noncondensing

Bus Loading

The RWC-CO4 module is equivalent to 2 unit-loads on the DCE-BUS (see Section 4.4).

7.12.5 TEST PROCEDURE

This section defines a simple test configuration and a test program for performing a basic functional test on the RWC-CO4 module.

Users are advised to carry out such a test procedure when necessary to establish the correct functioning of a module. The test program also provides a good example of RWC-CO4 module driver software.

Test Configuration

The following test program relates to the test configuration below.

The quiescent current and the full range currents are both read in the dynamic state. The program enables the user to put any suitable value in the counter associated with a particular channel, and to get the expected value of output current.

; RWC-CO4 MODULE TEST PROGRAM

```
; TYPE CHANNEL NO BETWEEN 0-5
        ; FOLLOWED BY CHANNEL COUNT
        ; CHANNEL O IS PERIOD TRIGGER PULSE GENERATOR
        ; FOR THE OTHER CHANNELS
        ; SET CARD ADDRESS SELECT SWITCH TO '2'.
        ORG
                1020H
                       ; PROGRAM START LOCATION
START:
        LXI
                SP, 17COH ; INITIALISE STACK POINTER
        CALL
                TCRLF
                       ; DO A CARRIAGE RET LINE FEED
        CALL
                CIE
                        GET A CHARACTER &ECHO
                07H
        ANI
                        # MASK . >5 CH NO
                        STORE CH. NO. IN KEY
        STA
                KEY
        CALL
                TSP
                        ; OUTPUT SPACE TO
                        ; CONSOLE
        MVI C. 01 ; INITIALISE ARGUMENT REG
        CALL
                ADARG ; READ 2 BYTE DATA FROM
                        ; CONSOLE
                H
        POP
                        ; PUT 2 BYTE DATA INTO H&L
                DATAL
                        ; MOVE CONTENTS OF H&L
        SHLD
                        ; INTO 2 CONT LOCATION
                        ; STARTING AT DATAL
SORT:
        LXI
                H, KEY
                        ; LOAD NAME KEY IN ACC
        MOV
                A, M
                        ; PUT CH. NO DATA INTO ACC
        ANA
                        GENERATE ZERO FLAG
                A
                TRIG
                        JUMP TO SPECIAL CONTROL
        JZ
                        ; WORD SUBTINE
        MOV
                        ; PUT CH. NO. INTO ACC
                A, M
        CPI
                03H
                        CHECK IF DATA IN KEY
                        ; >2
        JNC
                MAN
                        JUMP TO MANIPULATE
                        ; >2 COUNTER ADD
        MOV
                A, M
                        ; MOVE CH. NO. INTO
                        ; ACC
        RRC
        RRC
        ADI
                32H
                        FORM COMTROL WORD
                        ; FOR MODE 1
        LXI
                B, COND
                        ; LOAD NAME COND INTO
                        ; B&C REG
        STAX
                        ; STORE ACC IN COND
                B
                CONT
        JMP
                A. M
MAN:
        MOV
                        ; PUT CH. NO IN ACC
                03H
                        ; SUBTRACT 3 FROM CH. NO
        SBI
        RRC
        RRC
                32H ; ADD 32 TO FORM CONTROL WORD
        ADI
                B, COND ; LOAD NAME COND IN B&C
        LXI
                        ; LOAD ACC IN COND
        STAX
                B
```

CONT:	MOV	03H	; PUT CH. NO. IN ACC ; CHECK IF DATA IN ; >2
	JNC MVI	CHIP2	; IF NO CARRY CHIP2 USED ; LOAD CHIP 1 CONTROL ; REG ADD
	STAX	В	; LOAD B&C WITH COADD ; STORE ACC IN COADD ; MOVE CH. NO. IN ACC ; FORM CH. ADD ; LOAD NAME CHNO IN
	LXI	B, CHNO	; LOAD NAME CHNO IN ; REG B&C
	STAX	BINIT	; REG B&C ; STORE ACC INTO CHNO
CHIP2:	MVI LXI STAX MOV SBI ADI LXI	A, 27H B, COADD B A, M O3H 24H B, CHNO B	;LOAD CHIP2 CONTROL REG ADD ;LOAD B&C WITH COADD ;STORE ACC IN COADD ;MOVE CH. NO. IN ACC ;SUBTRACT 3 ;FORM CH ADD FOR CHIP2 ;LOAD NAME CHNO IN B&C ;STORE ACC IN CHNO
TRIG:	LXI STAX MVI LXI STAX MVI LXI STAX	D, COND D A, 23H B, COADD B A, 20H B, CHNO	;LOAD ACC WITH CHO ;CONTROL DATA ;LOAD NAMECOND IN D&E ;STORE ACC IN COND ;LOAD CHO CONTROL ADD ;PUT NAME COADD IN B&C ;STORE ACC IN COADD ;LOAD CHIP1 CHO ADD ;LOAD NAME CHNO IN B&C ;STORE ACC IN CHNO

INIT:	STA LXI LDAX CALL LXI LDAX STA CALL CALL LXI LDAX STA LXI LDAX CALL LXI LDAX	GICB D, COND D WRRWC D, CHNO D GICB RDRWC D, COADD D GICB D, COND D WRRWC D, CHNO D WRRWC D, CHNO D WRRWC D, DATAL D WRRWC D, DATAM D WRRWC D, DATAM D WRRWC	; LOAD MAME COADD IN D&E ; LOAD CONTENTS OF COADD ; IN ACC ; LOAD ADD ON THE BUS ; LOAD NAME COND IN D&E ; LOAD CONTROL WORD INTO ACC ; WRITE CONTROL DATA 1N 8253 ; LOAD NAME CHNO IN D&E ; LOAD CHNO ADD IN ACC ; STORE IT ON BUS ; CLEAR LOWER BYTE REG ; CLEAR HIGHER BYTE REG ; LOAD NAME COADD IN D&E ; LOAD ACC WITH CONTROL REG ; ADD ; LOAD ADD ON THE BUS ; LOAD NAME COND IN D&E ; LOAD CONTROL WORD IN ACC ; WRITE CONTROLWORD INTO 8253 ; LOAD NAME CHNO IN D&E ; LOAD CH NO IN ACC ; STORE CHNO ON BUS ; LOAD NAME DATAL IN D&E ; LOAD LOWER DATA BYTE INTO ACC ; LOAD DATA IN TO 8253 ; LOAD HIGHER DATA BYTE INTO ACC ; LOAD HIGHER DATA BYTE INTO ACC ; LOAD DATA IN 8253
	RDRWC WRRWC CIE TCRLF TSP	EQU EQU EQU EQU EQU EQU EQU EQU EQU EQU	0349H 0561H 061FH 053AH

7. 12. 6 ORDERING INFORMATION

END

RWC-CO4 : Standard Version