el

PROGRAMMING THE DCE

STANDARD 8080 INSTRUCTION SET

93 Instructions which can be grouped as:

* Data transfer group: 13 instructions to move data between
registers or between registers and memory,

* Arithmetic group: 20 instructions to add, subtract, increment
or decrement data in register or memory.

¥ Logical group: 19 instructions to and, or, exclusive or,
compare, rotate or complement data in registers or memory.

* Branch group: 29 instructions to conditionally, or unconditionally
jump, call subroutine, or return from subroutines.

* Stack, I/O, machine control group: 12 instructions for input /
output, stack handling, and system control.

For a résumé of the 8080 instruction set see the table of Section 5. 5.

GIC AND TICC MACRO INSTRUCTIONS

A macro instruction is an indication to the assembler that a symbol
appearing in the label field of a statement actually stands for a
group of instructions. The following set of GIC and TICC commands
are macro instructions, and their definition punched on a paper-
tape must preceed the user source program during pass 1 of the
MAC-80 assembler (it need not be used during passes 2, 3,or 4).
Tapes with the GIC and TICC macro instructions are available to
users of the DCE. For those users who do not have access to an
assembler and wish to program directly with the HEX codes, a
GIC and TICC macro expansion table is provided in Sections 5,3
and 5. 4 on pages 5-3 and 5-4. The DCE-DM Development System
Resident Assembler (UAE) automatically recognizes all the GIC
and TICC macros and resolves the register address differences

between the different DCE microcomputer modules.

5

5:

2.

Z.

1

GIC Macro Instructions

GICC

BSET

BCLR

LDGI

STGI

LDGIS

STGIS

TICC Macro Instructions

amode, bmode

nbit
nbit

nport

nport

0

0

STXMT

LDRCV

STOUT

LDIN

STTIM

STIMR

LDSTA

STTCM

STCRR

LDIRP

ntimer

5-2

Configure GIC to one of 63 possible mode
combinations.

Set specified bit in GIC PORT 2
Clear specified bit in GIC PORT 2

Load contents of specified GIC port to
accumulator.

Store contents of accumulator in specified
GIC port.

Load contents of GIC PORT 0 to accumul-
ator synchronized with handshake signals.

Store contents of accumulator in GIC PORT
0 synchronized with handshake signals.

Store contents of accumulator in asynchron-
ous transmitter buffer.

Load contents of asynchronous receiver
buffer to accumulator.

Store contents of accumulator in TICC
output port,

Load data present at TICC input port to
accumulator,

Store contents of accumulator in specified
timer and start timer,

Store contents of accumulator in TICC interrupt
mask register.

Load TICC status register to accumulator.

Store contents of accumulator in TICC
command register,

Store contents of accumulator in communic-
ations rate register.

Load TICC interrupt pending register to acc,

Note

5-3

GIC MACRO EXPANSIONS ¥

GICC

BSET

BCLR

LDGI

STGI

LDGIS

STGIS

MACRO
DB
ENDM

MACRO
DB
ENDM

MACRO
DB
ENDM

MACRO
DB
ENDM

MACRO
DB
ENDM

MACRO
DB
ENDM

MACRO
DB
ENDM

AM, BM

3EH, AMx8+BM+80H, 32H, 03H,

rve 4

S/ A D .;’ ,

NB

JEH, NBx2+1, 32H, 03H, 1CH
YL A plhxz +4

2% geo 3 £

NB

3EH, NBx2, 32H, 03H, 1CH
Mmvz fq, e X2
S‘_?-/r' 7(' o 2 ¢
NP -0

3AH, NP, lJCH P77, S ol &

NP
3ZH; NP, 1€8 STA

3AH, 0, 5CH

32H, 0, 5CH ST 4 ¢ ool

% copyright 1976, Data Applications International.

ZoA SCoOc H

1CH

V) Ao

2« (np)/s

This program is provided to users of DAI's DCE as a programming

aid,

The GIC register addresses are different for DCE-X.

No other use is authorized without DAI's written consent,

: The above macro expansions are applicable for DCE-1 and DCE-2.

5. 4 TICC MACRO EXPANSIONS ¥

STXMT MACRO
DB 32H, 6, 98H
ENDM

LDRCV MACRO
DB 3AH, 0, 98H
ENDM

STOUT MACRO
DB 32H, 7, 98H
ENDM

LDIN MACRO
DB 3AH, 1, 98H
ENDM

STTIM MACRO NT
DB 32H, NT+8, 98H
ENDM

STIMR MACRO
DB 32H, 8, 98H
ENDM

LDSTA MACRO
DB 3AH, 3, 98H
ENDM

STTCM MACRO
DB 32H, 4, 98H
ENDM

STCRR MACRO
DB 32H, 5, 98H
ENDM

LDIRP MACRO
DB 3AH, 2, 98H
ENDM
% copyright 1976, Data Applications International,

This program is provided to users of DAI's DCE as a programming
aid, No other use is authorized without DAI's written consent.

Note: The above macro expansions are applicable for DCE-1 and DCE-2.

The TICC register addresses are different for DCE-X.

5.5 REPERTOIRE)F DCE INSTRUCTIONS

===———HEX CODES ASSEMBLFR FUNCTION —FLAGS —
FORM 4
MOV b (ﬁ[) /1 5-{’0 #{)‘uv;«e‘u- ISJZ|&C|PkY|
reg *
bt Byt o o
A 7D 7E MOV A, r A)=— & - -
47 4O 4L 42 43 Ly 45 46 MOV B, res %ag-—g::; Lol A8, A
LF LB 49 LA LB LC 4D 4E MOV C, reg (C)=—(reg) T
57 50 51 52 53 54 55 56 MOV D, reg (D) =—(reg) B e
5F 58 59 54 5B 5C 5D SE Moy E, reg E reg o'e - e -
6?60616263&6566 MOV H, reg E; fra; - - - - -
ARARBARS B oEnt BIER g &0 DIt
u s reg (M) =—(reg) *—-}éa(6“12 ’9 ., -
ACCUMULATOR GROUP
87 80 81 82 83 84 £5 86 ADD reg (A)=—(A) +
8F 68 39 84 BB BC 8D 8E ADC res @%¢ (A)oe(h) (reE) 4 (cm) SO
97 90 91 92 93 94 95 96 SUEB reg (A) =—(A) - (reg) L
. 9F 98 99 94 9B 9C 9D E SBB reg 1..69 (A)=—(A) - (reg) = (cY) rr e e
A7 AD ALl A2 A3 Al AS A6 ANA reg Anol- (A)=—(A) n (reg) ++0+0
AF A8 A9 AA AB AC AD AE XRA reg Aov- (4) == (A) © (rog) ++0+0
B? BO Bl B2 B3 By BS B6 ORA reg OF (4)=—(A) u (reg) ++0+0
BF BB B9 BA BB BC BD BE CMP reg cp (A) = (reg) Pt
3C O4 OC 14 1C 24 2C 34 INR re (reg) =— w1 e 2 -
3D 05 OD 15 1D 25 2D 35 DCR r.ﬁ (n:i*—g:::)r -1 pFe "5 o : : -

jm_m,z;_&}m
{.‘:fxr A s 2 L é‘/ =

B D H SP Psw
03 13 23 33 - INX rp (rp)=—(rp) + 1 e e =l e
03152 3B - XX rp (rp)=—(rp) - 1 pec 6’ Al
85%3" * é.?‘uxrp E:.-)—}-({r); cd o, CH) e
oy - - = - rp rpli=—{A fd [r}u - ===
ad € h4g b ~ B2 - DAD rp (H,L) = (H,L)+(r f 7 HERRE
5 D5 E5 = FS PUSH rp Eépsx)’)-l()‘—igh) (SP}qZ)-—{r),}. = e
DLE - F1 POP rp (rl) -—((SPJ) (rh)=—((3P)+1), - -
(SP) =——(sP
IMMEDIATE SROUP /y
3E dd MVI A, data (A)e—data (L rog, Lot el
06 dd MVl B, data (8)e—data [e T
. OE dd MVI C, data (C)-=—data e
16 dd MVI D, data (D) e—data / - -
1E dad MVI E, data (E) »—data | -
26 dd MVI H, data (H) =—data L| TR
2E dd MVI L, data (L) =—data \ g
36 dd MVI K, data (Hg-——-data Sulor b ¥« w oo
Cé6 dd ADI data (A) =—(A) + data APD & oot rre e
CE dd ACI data (A) =—(A) + data + (CY) +r e e
D6 dd SUI data (A) =—(A) - data e
DE dd SBI data (A) =—(A) - data = (CY) *re e+ e
E6 dd ANI data (A) =—(A) n data +4+0+0
EE dd ¥RI data (A) =—(&) © data ++0+0
Fé6 dd ORI data (A) =—(A) U data ++0+0
FE dd CP1 data (A) - data E I
01 al ah LX1 B, addr (B)e—a4,(C)e—al s el
11 al =sh LXI D, addr (D)-—ah (E) =—al R S
21 al ah LXI H, addr (!l)——ah,(L)-—-nl ey
31 al ah LXI SP,addr (SPh)-——ah.(SPI)--al - -
DIRECT GROUP
2y
34 al ah LDA addr (A) =—(addr) 24 oy (* i) e
35 al ah STA addr (addr) =—(4) (ol [ocvtsy) T R
2A al ah LHLD addr (L) =—(addr), (H)=—(addr + 1) -]
22 al ah SHLD addr (addr)=—(L), (addr + 1)=—(H) e

st

plea
#lec
Fre

Ha lf.

of e

7

HEX CODES ASSEMBLER
FORM
JUMP GROUP
C3 al ah JMP addr
al ah JNZ addr
CA al ah JZ addr
D2 al ah JNC addr
DA al ah JC addr
E2 al ah JPO addr
EA al ah JPE addr
F2 al ah JP addr
FA al ah JM addr
E9 PCHL
Ls 30 (ht)
CALL GROUP
CD al ah CALL CALL addr
E‘h al ah : CNZ addr
C al ah cz addr
Dhyalah ¢ TP ! CNc addr
DC al ah cc addr
E4 al ah CPO addr
EC al ah CPE addr
Fi al ah CP addr
FC al ah CM addr
RETURN GROUP
Cc9 / RET
0 pefF - RNZ
c8 RZ
Do ZiL *-/J RNC
D8 RC
EQ RFO
E8 RPE
FO RP
F8 RM
RESTART GROUP
c7 RST O
CF RST 1
D? RST 2
DF RST 3
E? RST &4
S BT 2
F7
FF RST 7
ROTA CONTROL/ SPECIAL GROUP
7 e
OF Frcx
17 RAL
1F RAR
00 NOP
76 HLT
F3 DI
FB il
E3 « 4-‘; i) XTHL
F9 ax a4 (1P) SESL
EB X ‘4, ofe g
27 DAA
2F CMA
37 STC
3F CHC

5-6

FUNCTION
(PC)=—addr JP oS
If 2=0, (PC)e— addr > ardes
If 2=1, (PC)e—addr — v
If C¥=0, (PC)=—addr — — N,
If CY¥=1, (PC)=addr — — ¢
If P=0, (PC)e—addr — e
If P=1, (PC)e—addr ,(’
If 520, (PC)e—addr £’
If S=1, (PC)e—addr s
(PCp)=—(H), (PCy)=—(L) i o
(T0S) =—(PC), (PC)=—addr

It 2=0, (T08)<—(PC),(PC)=—addr
1f 2=1, (T0S)=—(PC),(PC)w—addr
If CY=0,(T0S)=—((PC) =—addr
If CY=1,(TOS)=— PC) =—addr
If P=0, (T0S)=—(
If P=1, (T0S)=—(
If 5=0, (T0S)=—{
If S=1, (T0S)=—(

(PC) =—(TOS)
It 2=0, (PC)=—(T0s)
1f z=1, (PC)—(T0S)

reset,
Interrupts disabled

Interrupts enabled after next instruction

(L) ==((SP)), (H) ==((SP)+1)
(SP)=—(H) (L)

(H) ==(D), (L) ==(E)
Decimal adjuet accumulator
A)=—(R)

CY)=—1__

(CY) =—(CY)

LY+ 011
e e ey A
+HIL+1 01011

4 L0 ER
L+t 1001

5-7

= /
MhACRo 5.
HEX CODES ASSEMBLER FUNCTION —FLAGS—
FORM

TICC GROUP |s|zlacipicy|
32 06 98 STYXMT (Traaswit buffer)es—{(A) - - =-wmes
3A 00 98 LDRCV (A)Y==[Recedxe Buffear) = - o e e wee
32 07 98 STOUT T R RN A T IR e R ([T D
34 01 98 LDIN (A)=—=Cinput-port). o oo e e e e
32 09 98 STTIM 1 R T e S i S ey o B
32 oA 98 STTIM 2 PSRN Y e EY S5 e T TR - T e i e
32 0B 98 STTIM 3 (Mwor S)=8a} -~ @ L lssEmaa-
32 0C 98 STTIM &4 e e) e = S L e e
32 oD 98 STTIM 5 CREa Sy =g s or s T L e R e
34 03 98 LDSTA CAYs={TIcC-akatud) - = .- L0, . are wie=ss
32 04 98 STTCM (TICC Command)=—(A) = =====
32 05 98 STCRR (Rate register)=—(A) = === ==
3A 02 98 LDIPR (A)=—(Interrupt pending) @ ‘= = ===
32 08 98 STIMR (Intr. Mask reg.)=—(a) = === --=-
GIC GROUP
3E cd 32 03 1C GICC am,bm (GICC Cmd reg) =——cd;cd=80+8 #am+bm @ = = - = - =
3E cc 32 03 1C BCLR n (P2Bn)=—0O3¢c=24n = == a==
3E cs 32 03 1C BSET n TR TR m L e s = R S S S, T s
3A Om 1C LDGI m DI 2o 1 vt oy iy, ot Sl PEISE S S SR S0 Tk D
32 Om 1C STCI m CPopm - G YT " 5 e T e e)
3A Om 5C LDGIS m EAY e P M B o T ST L e re e e
32 Om 5C STGIS m R (R o S

5-8

\

56 Y INITIALIZATION OF THE DCE

po TT (
The DCE contains an automatic power-on reset feature. When power

is applied to the DCE, the following conditions are established:

3 8080 CPU Program Counter is set to zero.

& 8080 CPU Interrupts are disabled.

% All GIC ports are in input mode (high impedance state).
: All TICC registers contain random values.

All RAM memory locations contain random values.

: 8080 CPU Registers, Accumulator, Flags, and Stack

Pointer contain random values,

After Reset, the program will start executing, starting at memory
address 0000 (F000 for DCE-LSA systems). The first few program
steps must load the control registers of the GIC and TICC with appro-

priate values in order to set up the desired DCE configuration.

The TICC device does not have a hardware Reset signal. It must be
Reset by software, via Bit 0 of its Command Register. After Power-

on reset, this reset bit in the TICC Command Register may not

necessarily be zero. It must be cleared, and then set to ensure

correct TICC Reset.

The following steps must be included in the initialization sequence of the

users program (unless program is entered via DCE Utility Program):

1. Clear TICC Interrupt Mask Register to zero.
2. Clear TICC Command Register to zero.
3. Delay 1 second (nominal) while the Reset line settles for Real-World

interface cards connected to the DCE-BUS. This may be omitted

if no Real-World cards are present.

5-9

Initialize the TICC by loading the TICC Command Register with
a value having Bit 0 equal to I and Bits 4 to 7 equal to zero.

Select Bits 1,2,3 for conditions desired, (see Section 3. 4. 2).

Load the TICC Communications Rate Register to set the desired

Baud rate and the number of stop bits (see Section 3. 4. 3).

Load the TICC Interrupt Mask Register to enable desired interrupts
(see Figure 6-2). Logical one in a bit position enables the

corresponding interrupt.

Configure the GIC for the desired I/O mode (see Section 2. 7.2).

Initialize the Stack Pointer. Load a value one greater than the
highest RAM location (1200H for DCE-1 and 1800H for DCE-2).
The first byte pushed on to the Stack will then be saved in the
highest RAM location, since the Stack Pointer is decremented

before data or an address is pushed on to the Stack.

Enable 8080 CPU interrupts, if desired.

5

6.

1

A Typical DCE Start-Up Sequence

The following is a typical initialization procedure starting at address

0000.

JMP INIT
INIT: ;,(RA A
STIMR zero interrupt mask register.
STTCM zero TICC command register,
delay about 1 second
LXI H,0FFFFH
DELAY: LXI D,0FFFFH D,E = -1
DAD D
JC DELAY
MVI A,0DH reset TICC, select IN7 and interrupt
ack. enable
STTCM
MVI A,l select 110 Baud, 2 stop bits
STCRR
MVI A,0COH enable IN7 and timer 4 interrupts
STIMR
GICC 1,0 configure GIC ports
LXI SP,1800H initialize Stack Pointer (DCE-2)
EI enable CPU interrupts

After execution of this program segment, the TICC will be configured

for operation with interrupts. IN7 is selected instead of Timer 5 as

the interrupt 7 source. The serial 1/O is programmed for 110 Baud

with 2 stop bits. The interrupt mask register is programmed to pass .
interrupt no. 6 and 7 (see Figure 6-2). GIC Ports 0,1,2 (B0-B3) are
configured as output, Port 2 (B4-B7) as input.

The first instruction at address 0000 in the previous example program
is a Jump. It is necessary because address space from 0000 to 0008
(in PROM) is the interrupt 0 vector area. If none of the interrupts
are used, this Jump instruction is not necessary, and the program

could start directly at address 0000.

If Timer 1 is to be used, the program segment starting at address 0000
must first determine whether a power-on reset or a time-out has occurred.
It can then jump to the initialization routine or Timer 1 service routine
accordingly. One possible technique for realizing such a scheme is

explained at the end of Section 3.2. 2.

Note: All DCE Utility programs perform the DCE start-up procedure
during initialization. If, subsequently, the user program
performs a software reset of TICC via the reset bit (bit 0)
of the TICC Command Register, then all other TICC

registers must be re-initialized to desired values.

mb -

PROGRAMMING DCE FOR

REAL-TIME MESSAGE TRANSFER

INTRODUCTICON

One of the most important features of the DCE is the interrupt controlled
serial communications 1/O circuits. These circuits allow the DCE to
input and output variable length messages on a character-by-character
basis simultaneously, while executing programs that realize the work
for which it is directed. In other words, the DCE can communicate

in real time with other computers, remote printers, data acquisition

devices and with other DCE cards.

In a typical application the DCE must control an isolated process, collect
data, and transmit messages to a central computer system for further
data processing. In turn, it must receive the control parameters from
the central system to adjust its control function accordingly. In such an
application both the serial input and output must simultaneously co-exist.
Also, the length of the input and output messages can be variable and
under the control of both the programmer and the input source. Further-

more, the DCE must continue its control function to which it is dedicated.

ARCHITECTURE

To realize simultaneous message transfer and control program execution,
the TICC must be programmed to interrupt the CPU each time a character
has been sent and each time a character has been received. This can be
realized by setting up the TICC mask register to pass interrupts 4 and 5
(load logical ONE into bit positions 4 and 5) and starting the interrupt
service routines in the corresponding PROM vector area (section 3. 2.1 on

page 3-10).

The routines needed to realize this application are: Message Initialization

routine, Input Driver Routine and Qutput Driver Routine. The Message

Initialization Routine is contained within the mainline control program. The

Input and Output Driver Routines are interrupt driven.

i e

§-1.2. 2

5T 23

Message Initialization Routine

The purpose of the message initialization routine is to initialize the control
parameters needed by the Input and Output Driver Routines each time

the main-line program desires to transmit a message or receive a message
on the serial ports of the TICC. In our example the control parameters
are: message length, first-character address of outgoing message, first-

character storage address of incoming message.

An additional task of the Message Initialization Routine is to call the Output
Driver Routine once each time a message unit is to be transmitted. This

action causes the Driver to transmit the first character. The Driver will
be activated by the TICC transmit-buffer-empty interrupt to transmit the

rest of the characters.

Qutput Driver Routine

The task of the Qutput Driver Routine is to respond to the transmit-buffer-
empty interrupt generated by the TICC, to send out the next character in

the message string, to check if there are more characters to be transmitted,
and to turn off the output message active flag that was set by the Message

Initialization Routine.

Input Driver Routine

The task of the Input Driver Routine is to respond to the receiver-buffer-
loaded interrupt generated by the TICC, to store the received character
into the next sequential message storage location, to realize that the end
of message has occurred,and to turn off the input message active flag that

was set by the Message Initialization Routine.

5.7.3 DESIGN

5.7.3.1 Message Initialization Routine

The Message Initialization Routine is initiated by the main-line program
under execution in the DCE at a moment when it wishes to send a message
or receive a message on the serial ports of the DCE. Illustrated in

Fig.5-1, page 5-15 is a flow diagram of the Message Initialization Routine.

When the main program is ready to send or receive a message string via

the TICC serial port it must first check if the appropriate routine is free,

or if it is still engaged in transmitting or receiving a previous message. .
The main program does this by examining the appropriate message active

flag. If it is not set, the respective driver routines are free. In this

case it places the address of the first string character and the message

length into a predetermined location in the RAM memory. It then sets

the appropriate message active flag and initiates execution of the first

character,

5.7.3.2 Output Driver Routine

The Output Driver Routine is initiated by recognition of the interrupt by
the TICC after it has completed the output of a character. Illustrated

in Fig.5 -2, page 5-16 is a flow diagram of the Output Driver Routine. .

The output routine sends the character from the address specified in

the length register to the TICC transmitter register, it then checks if
there are more characters to be sent and returns control to the interrupted
program. While the TICC is shifting out the character, the DCE continues

with the main program.

When the transmitter register is empty the TICC interrupts the CPU and
returns control to the output driver routine for transmitting the next

character., When all the characters have been transmitted the output

routine resets the OUT MSG flag as an indication to the main program

that it is possible to accept the next desired message. Note that when

the TICC interrupts the CPU after the last character, the output routine, .
receiving the command, sees the OUT MSG flag reset and returns control

to the main program immediately.

MAIN-LINE
PROGRAM ﬁ

Process work of
main-line program

e

Check

if output is
active

I,oad address of

first message

character into
LOC reg.

Yes

- o

?

Process work of
main-line program

NX

1

Load message
length into
length reg

FEL ol b
a No /heck

Load output-
message active
flag into flag

register

if input is
L \ive

Load first Yes
char storage
address
into LOC reg.

Call output
driver routine
to initiate
message flow

Load the No.
of allowable
char's into

l<}—————— Output message initiation sequence

i

o

o

g

(%)

)

o

V

w length reg.

-

3]

e

o

—— —— — — — F—- ‘; »

‘B Set input

; active flag

)

o

w

1]

o

&

2 Enable

£ interrupt

|
v v

/ Process work of
| main-line program
‘ —_— —

Figure 5-1

ST

Message Initialization Routine Flow Chart

CUTPUT

Disable interrupt

4\

il 4?: mesg flag
\et
b

Yes

Enable
Interrupt i

Send character
whose address
is in the LOC

register

I

Increment

.:.9(& /'v.‘ } ,k)',(:'. -(_- f"¢ 3.:#)

Loc register

Decrement

Length register

Have
Yes all characters
N sent
"

Clear output
message
active flag

e

Y

Enable Interrupt

Figure 5-2 Output Driver Routine Flow Chart

5.7.3.3 Input Driver Routine

The Input Driver Routine is initiated by the recognition of an interrupt by
the TICC after it has received a character from the serial input port.
Illustrated in Fig.5-3, page 5-18 is a flow diagram of the Input Driver

Routine.

The input routine is called automatically by the TICC when it has received

. a character from the serial input port. It then checks to see if the characte
is a special end-of-message character. (The end of message character ma)
be any character desired by the programmer, although it is not necessary to
have it at all). If the character is the special end of message character, the
input routine clears the Input -message-active flag and returns control to the
main-line program. When the end of message has not been specified,the
input routine stores the received character into the memory location in-
dicated by the contents of the ILOC register and increments the ILOC
register to set up the address for the next coming character of the message.
The input routine then decrements the length register and checks to deter-
mine if all allowable characters have been received. In the event that this
condition is true, the input routine clears the Input-message-active flag

. and transfers control to the main-line program. In the event that this is

false it simply transfers control back to the main-line program.

INPUT

Disable
interrupt

Enable
interrupt

flag set

Yes

Take character
from TICC
input buffer

l

18
Yes :
char a special

msg end
char

Store character
at mem location
indicated by
ILOC register

Increment
ILOC reg.

I

Decrement
length reg.

I

Have
all characters
been
recd

Yes

-

v

Clear input-
message-

active flag

Enakble
interrupts

-
Gt)

Figure 5-3 Input Driver Routine Flow Chart

