THE TMS 5501 MULTIFUNCTION
INPUT/OUTPUT CONTROLLER

This is a multifunction peripheral logic device built by Texas Instruments only. Itis
designed to work with 8080 or 8080A CPUs. The TMS 5501 does not use the
8228 System Controller; it decodes the Data Bus during the SYNC pulse.

The TMS 5501 provides many of the functions provided by the 8255 PPI, 8251
USART, 8253 Programmable Timer/Counter and 8259 Priority Interrupt Control
Unit. In each case, the TMS 5501 has simpler iogic, with fewer options; but for a
very large number of applications, TMS 5501 features will be more than adequate.

Here are the TMS 5501 features provided:

1) Two external interrupt request lines.

2) An 8-bit, parallel input port.

3) An 8-bit, parallel output port.

4) A single, asynchronous serial 1/0 channel without handshaking.

5) Five programmable timers, each of which times out with an interrupt request
after an interval that may range from 64 microseconds to 16.32 milliseconds.

Figure 4-59 illustrates those logic functions in our standard microcomputer
system illustration which have been implemented by the TMS 5501.

The TMS 5501 is fabricated using N-channel silicon gate technology and is
packaged as a 40-pin DIP.

TMS 5501 DEVICE PINS AND SIGNALS

Figure 4-60 illustrates TMS 5501 device pins and signals. We will begin by sum-
marizing these signals.

There are three data busses. DO - D7 are the bidirectional Data Bus pins via which
data is transferred between the TMS 6501 and the CPU. XIQ - XI7 are the pins via which
external logic inputs 8-bit parallel data to the TMS 5501. XOO - XO7 are the eight pins
via which the TMS 5501 outputs 8-bit parallel data to external logic. Notice that XO
lines are negative-true whereas X! lines are positive-true. Optionally XI7 may be used
for low priority external interrupt requests.

4-178



walsAg 181ndwoo0IdIN Y0808 UV 104
‘1dnusiuj uy Buimo|j04 apo) uonoNIIsSU| 1eISaY By JO UOBIBUSY ‘gG-p 81nbig

N tlolololt]t o]z Jseuen ('s1swwesBoid weisAs 03 uonned y)
tfeliclololcde i lo *P9OAUI BUIINOJ BY} UO Paseq WBISAS 8y} azijeliulal pinod sy
‘0808 O1 Indul | |3S3Y,, S@ SUINOCI BLUES BY) B)OAU!
tjejtjojurjogeytjezls pue (0182) () UONEIO| O} JBIUNOY WeIBOId J010BA [IM OLSH o
Lprjujejejogptijtjeiy VANI ano
tjrjrjojojtjrjrjvi]e n—— _._.nw
tjejirfjtjoefjrjrysie oua NE] (4300230 1H0d
$73 0/1 WOH)
Lprjrjojuojuegprjryeft £ SNLVLS
tfofejufofuofu]igefo]ssemen _ 8 o { SSS Oy 1NZHHND
Z ) VN3
vl e fov|ivlev] v | b Jusy] LS3N0 isa  aw @
= e zsa 18 jos
N2 )
00 LG 2za €a ¥Q Sa 94 ¢a : vl ”
1z ,rwm La " 14 P77 ~~— (Y
9 9a ou - gy
W s0a sa N—l - oV sY .N sy m
Sfro0 zies  vafp - v vize O ~—py \
€0a ea [ - £ =i (B
0a a4 HRX/ ]
100 10§ 14 fO5 ~— |y
= 00 f=— oufogy - O
(¥L Nid 0808) LNI A AN a1s T s ANI JUNE vi —g— 3IN!
€T | b
) > > >
oi Yvvyyyy A Nt onw
it (1L LI2P
< o 20A
La T . a
°a - 9a
sa [Te]
va SN TYNOILO3HIGIS-0808 va
£a - €a
z2a za
1a - I¥e]
oa oa

4-179



Asowepy
81UM/peey

]
[

21807 89BpBIU}
pue BuissaIppy Wyy

)
I

18]1023U07) INdINO/ANdU| UOROUNKHNIN LOGG SIL 8UL JO 21607

Asowispy AluQ peey

01Bo7 eoeuLU} pue
Buisseippy WOY

A

SN8 W3LSAS

|

oiBoq
|011u0) $S800Y
Asowsy 108i1Q

Jeuno) weuBoid

]

181U104 %2815

{spewno) eieq

nn [0AU0)

(spersiBey
JOIBINWINDOY

JeisiBey uonoNASU|

nun 9160
pUE JnBWIYINY

21Bo7 %0012

6G-t 81nbiy4

4-180



(e R — 40] XMT
VG w— 2 39 let— X10
VDD ——— 3 38 feag— X1
_‘_’§ — 4 37 fet—— XI2
ROV g} 5 36 |t XI3
07 ] © 35 Lo X14
06 it 7 3 L XI5
D5 —— 8 33 Lo~ XI6
D4 ] 9 32 b XI7
D3 g} 10 ™S 3t %07
D2 g} 11 5501 30 o XO6
D1 eg—] 12 29 o XO05
D0 ~ag—p] 13 28 f——— XO04
AD ] 14 27 p——a X03
Al f 15 26 fmep XG2
A2 )16 25 b XOT
A3 ] 17 24 b X00
CE asmmeg-1 18 23 g INT
SYNC i1 19 22 pea— SENS
D1 -] 20 21 p— 2
PIN NAME DESCRIPTION TYPE
DO - D7 Data Bus to CPU Bidirectional
X10 - Xi7 Data Bus from external logic Input
X00 - X07 Data Bus to external logic Output
XMT Transmit serial data line Output
RCV Recsive serial data line Input
SENS External interrupt sense Input
INT Interrupt request Output
CE Chip Select Input
AO - A3 Address Select Input
SYNC Synchronizing signal {SYNC) from 8080A Input
D1, 2 Clock inputs, same as to 8080A Input
Vee-Vee Voo Vss Power supply (-5V, +5V, +12V) and Ground

Figure 4-60. TMS 5501 Multifunction Input/Output Controller Signals
And Pin Assignments

Do not miss the significance of X0 negative logic; whatever TMS 5501
you write to the TMS 5501 for parallel output will be comple- OUTPUT
mented. XO signals are the inverse of the output buffer con- SIGNAL
tents. INVERSION

Serial 1/0 data uses the XMT and RCV pins. XMT is used to
transmit serial data, whereas RCV is used to receive serial data. Note that RCV is a
negative-true signal, whereas XMT is a positive-true signal.

External logic may request interrupt service either via the SENS input or via the
X17 input. A low-to-high transition on either signal constitutes an interrupt request.
SENS is always part of external interrupt request logic; Xi7 must be programmed for
this purpose — in which case the eight X| pins cannot be used to input 8-bit parallel
data.
Logic internal to the TMS 5501 may also generate interrupt requests. Whatever
the source of the interrupt requests. it is passed on to the CPU via the INT interrupt re-
" gquest signal.
The TMS 5501 is accessed either as 16 1/O ports or 16 memory locations. Ad-
dressing logic consists of a chip select (CE) and four address select inputs (A0, A1,
A2 and A3).

4-181



The TMS 5501 receives the SYNC timing pulse, and this requires special mention.
While SYNC is high, the TMS 5501 decodes status off the Data Bus, therefore the 8228
System Controller is not needed.

Additional signals required by the TMS 5501 are the identical two 8080A clock
signals ®1 and ®2. Slight clock signal variations will confuse serial 1/0 logic which
computes baud rates internally.

A feature of the TMS 5501 which you must note carefully is TMS 6501
that it cannot handle Wait states. Any Tyy clock periods in a WAIT STATE
machine cycle will cause the TMS 5501 to malfunction.

There is a further unlikely ramification of the TMS 5501 inability to handle Wait states.
If you are accessing the TMS 5501 as 16 memory locations, then you cannot have
a Halt instruction’s object code in the memory location immediately preceding the
16 TMS 5501 addresses. If you do, the Halt instruction will execute. following which
the Address Bus will contain the address of the next sequential memory location —
which now is a TMS 5501 address. Thus, the TMS 5501 becomes selected. But the
TMS 5501 logic cannot cope with a sequence of undefined clock periods, which is ex-
actly what will happen following a Halt instruction’s execution. The net effect is that
following a Halt, the TMS 56501 receiver buffer loaded flag will be inadvertently cleared.

Always make sure that the memory address directly preceding the 16 addresses
assigned to a TMS 5501 remains unused.

TMS 5501 DEVICE ACCESS

Some of the 16 1/0 port or memory addresses via which the TMS 5501 device is
accessed are equivalent to memory locations, but others are command identifiers.
Table 4-16 defines the manner in which addresses are interpreted.

You will find the TMS 5501 far easier to use if you address it as 16 memory locations,
because that will give you access to memory referencing instructions.

When creating TMS 6501 select logic, any of the select schemes described earlier in
this chapter will do — with one addition. Include READY as part of the select logic; if
READY is low, a Wait state will follow, and that will cause the TMS 5501 to malfunc-
tion. By making READY high a necessary component of device select logic. you can
avoid this problem.

In the following discussion of individual TMS 5501 capabilities. we will use program-
ming examples to show the effectiveness of including the TMS 5501 device within your
memory rather than 1/0 space.

4-182



Table 4-16. TMS 5501 Address Interpretations

>
w
>
N
2
3

FUNCTION

0 0 (0] 0 [ Read assembled serial input data byte out of Receiver Buffer

0 0 0 1 | Read parallel data input via XI0 - XI17

0 0 1 0 | Read RST instruction code, as a data byte, when polling interrupt requests
0 0 1 1 | Read Status register contents to the CPU

0 1 0 0 | Write command code to the TMS 5501

] 1 0 1 | Load serial I/0 Control register, specifying baud rate and stop bits

0 1 1 0 [ Write data byte to serial transmit logic

0] 1 1 1 | Write data byte to parallel output port

1 0] 0 0 | Write out interrupt mask byte to selectively enable and disable interrupts
1 0 0 1 | Write initial count to Interval Timer 1

1 0 1 0 ] Write initial count to Interval Timer 2

1 0 1 1 | Write initial count to Interval Timer 3

1 1 0 0 | Write initial count to Interval Timer 4

1 1 0 1 ] Write initial count to Interval Timer &

1 1 1 0 | No Operation

1 1 1 1 J No Operation

TMS 5501 addressable locations 3, 4 and 5 are used for status and controis which
generally apply to serial 1/0 and interrupt processing. We will define how these ports
are used now. in advance of our discussion of TMS 5501 serial I/0 and interrupt pro-
cessing capabilities.

Locations 3 and 5 apply to serial I/O logic. Location 3 is a Status register whose
bits are interpreted as follows:

7 6 543 2 1 0-=—aiNo.

[ ] ] I I I I Ij‘_wl/oswluswgister(AMmsa)
L AAAAAA

1 Framing error detected

1 Overrun error detected

1 No serial data being received
1 Receive Buffer ready to be read
—————— 1 Transmit Buffer empty

1h P di

1 Serial data character being received
1 Start bit as been detected

Bits O and 1 are standard framing and overrun error indicators.

If a framing error is detected, Status register bit O will be set to 1 and will remain 1 until
assembly of the next complete serial data character has been completed.

If Receiver Buffer contents are not read while the next serial character is being input
and assembled, an overrun error will be reported in bit 1 of the Status register. This er-
ror indicator will be cleared as soon as the Status register contents are read, or when a
reset command is output. Remember. you have the time it takes to receive and assem-
ble one character in which to read the previous character out of the Receiver Buffer.
This is because receive logic includes a double buffer. A character is assembled in a

4-183



Receiver register; when completely assembled, it is shifted to a Receiver Buffer and the
next character is assembled in the Receiver register:

RCV I Byte N j [ Byte N+ 1 x

Receiver Byte N being Byte N + 1 being

Register assembled assembled

Contents

Receiver Assembled Byte N-1, Assembled Byte N,
Buffer waiting to be read waiting to be read

Contents

Status bits 2, 3, 6 and 7 monitor the condition of the serial data input signal. Dur-
ing a break, that is, when no valid serial data is being input, status bit 2 will be high. As
soon as a start bit has been detected. status bit 2 will be.reset low and status bit 7 will
be set high. When the first valid data bit is detected. status bit 6 is also set high. When
the received character has been assembled in the Receiver Buffer, and may be read by
the CPU, status bits 7 and 6 are reset and status bit 3 is set. This may be illustrated as
follows:

End of first data character

RV M QA D \P OO 4N M L A [ b

. (\l;\i

Bics —
Bit 7 [ \ |

Marking
Start bit
Data bits
Parity bit
Stop bits

oOvor=Z

Status bit 4 applies to serial transmit logic. As soon as the Transmit Buffer is ready to
receive another byte of data, status bit 4 will be set high. It will remain high until new
data has been loaded into the Transmit Buffer.

Transmit logic, like receive logic, is double-buffered. A byte of data is held in a
Transmitter register whilebeing output serially; meanwhile, the next data byte may be
loaded into a Transmitter Buffer. Transmitter Buffer contents are automatically shifted
to the Transmitter register when serial output of a data byte is complete. This may be il-
lustrated as follows:

XMt I Byte N \ [ Byte N + 1 |
Transmitter Byte N being Byte.N + 1 being
Register output serially output serially
Contents
Transmitter Write Byte N + 1.into Write Byte N + 2 into
Buffer Transmitter Buffer Transmitter Buffer
Contents during this time during this time

4-184



Status bit 4 is high from the instant Transmitter Buffer contents are shifted into the
Transmitter register, until a new data byte is written into the Transmitter buffer.

Status bit 5 is set whenever the TMS 5501 has an unacknowledged interrupt re-
quest. While this status bit is very important in serial I/0O operations, it also may have
application elsewhere; this bit therefore may be looked upon as an exception within the
Status register. in that it is the only status flag that does not apply strictly to serial I/0
operations.

TMS 5501 addressable location 5 is also dedicated to serial I/0. Into this location
you must load a control byte which selects baud rate, and the number of stop bits.
Register contents will be interpreted as follows:

7 65 432 ) O --—B8itNo.

rT l [ l l l l l<_Baud Rate Register {Address 5)

A )
1 =110 Baud
1 =150 Baud

— 1 =300 Baud )

1 = 1200 Baud Baud rates raised
1 = 2400 Baud on 2 mHz clock
1 =4800 Baud
1 = 9600 Baud

1 = One stop bit
0 = Two stop bits

If more than one of bits O through 6 are high, then the highest indicated baud rate will
be selected. |f no haud rate bit is high. then all serial transmit and receive logic will be
inhibited.

TMS 5501 addressable location 4 is a general command register. Its contents will
be interpreted as follows:

7 6 5 43 21 0-=—a8itNo.

l I I I T] T]‘—"Comrol Register (Address 4)
N

N
\ ‘ ‘ 1 = Device reset
1 = Output Mark on idle
0 = Output space on idle
1 = Select XI7 as lowest priority interrupt
0 = Select interval timer 5 as lowest priority interrupt
1 = Enable TMS 5501 interrupt acknowledge
0 = Disable TMS 5501 interrupt acknowledge
- 0 = Normal baud rate and interval timing
1 =TMS 5501 ®1 internal clocking runs eight times normal rate, which
1) multiplies all baud rates in the baud rate register by 8, allowing
high speed data transfers at rates up to 76.8 kilo baud
2) decrements the interval timers every 8 microseconds
0 = Normal operation
1 =INT outputs a clock whose frequency depends on bit 4. If bit 4 is reset
{0), the output frequency is the system clock frequency divided by 128.
If bit 4 is set {1), the output frequency is the system clock frequency
divided by 16.
Can have any value

A

4-185



If your system does not require interrupts from the TMS 5501, you can set bit 5
high to derive a TTL compatible clock from the INT output.

If the TMS 5501 device is reset by outputting 1 to bit 0, then TMS 5501
the following events will occur: RESET

1) Serial receive logic enters the Hunt mode. Status bits 2, 3, 6
and 7 are all reset; however, reset will not clear the Receive Buffer contents.

2)  Serial transmit logic will output a high marking signal. Status bit 4 will be set high
indicating that transmit logic is ready to receive another data byte.

3) The interrupt mask register is cleared with the exception of the Transmit Buffer in-
terrupt, which is enabled. (Interrupt levels and interrupt masking are described
shortly.)

4) Al interval timers are halted.

The Reset has no effect on any of the following:

® Parallel input and output port contents

¢ Interrupt acknowledge enable

e Interrupt Mask register contents

¢ Baud rate register contents

¢ Serial Transmit or Receive Buffer contents

Control command bit 1 determines whether serial transmit Iogic will mark or
space when not transmitting data. A 1 in bit 1 will cause serial transmit logic to mark
{output high) while a 0 in bit 1 will cause transmit logic to space (output low).

If Reset conflicts with the break specification, then Reset will override and transmit
logic will mark, irrespective of the break bit specification.

The TMS 5501 can receive an interrupt request from one of nine different sources.
Using the eight Restart instructions, each interrupt request is assigned one of eight
priorities. For this to be possible, two interrupt sources share the lowest priority inter-
rupt level (RST 7}; these two sources are an external request arriving via X17 and the In-
terval Timer 6 time out interrupt request. You use bit 2 of the control command to
select which requesting source will be active at any time as the lowest priority in-
terrupt.

Bit 3 of the control command is a master enable/disable for TMS 5501 interrupt
logic. If this bit is output as O, then TMS 5501 interrupt acknowledge logic is dis-
abled — and that effectively disables the entire interrupt processing system. Observe
that with interrupt acknowledge logic disabled you can still use polling techniques in
lieu of interrupt processing.

Table 4-17. TMS 5501 Interrupt Logic And Priorities

Interrupt Data Bus
RST .
and Mask Status Instruction Interrupting Source
Bit D5 | D4 | D3
0 (highest) 0 0 o] RST 0 Interval Timer 1
1 0 0 1 RST 1 Interval Timer 2
2 o] 1 0 RST 2 External SENS interrupt request
3 0 1 1 RST 3 Interval Timer 3
4 1 0|0 RST 4 Serial 1/0 Receiver Buffer full
5 1 [o] 1 RST 5 Serial 1/0 Transmitter Buffer full
6 1 1 0 RST 6 Interval Timer 4
7 (lowest) 1 1 1 RST 7 Interval Timer 5, or external XI7
interrupt request, whichever has
been selected by command code

4-186



TMS 5501 INTERRUPT HANDLING

The TMS 5501 responds to nine different interrupt requests, with priorities as
defined in Table 4-17.

When an interrupt is acknowledged, INT is output high by the TMS 5501. if the TMS
5501 INT output is connected to the 8080A INT input, then the 8080A will
acknowledge the interrupt by outputting D1 high at SYNC high. The TMS 5501 res-
ponds to this acknowledge by placing an RST instruction’s object code on the Data Bus,
as required by standard,8080A timing. This is an utterly standard 8080A interrupt
request/acknowledge sequence.

Interrupts may be selectively disabled by writing a mask to TMS 5501 Register 8;
see Table 4-16. A 0 bit will disable an interrupt; mask bits are related to priorities as
follows:

7 6 543 2 ) Q ~=e—BitNo.
I T T L] L] e m™ss501Register 8
‘ ‘ “ \ “ ‘ L——‘Imerval Timer 1

b | terval Timer 2

b Excternal SENS interrupt request

b meeessremeeeme INterval Timer 3

Serial 1/0 Receiver Buffer full
Serial 1/0 Transmitter Buffer full
Interval Timer 4

Interval Timer 5 or external XI7 interrupt request

Note that TMS 5501 interrupt priorities apply to the request/acknowledge sequence
only —which is the standard passive interrupt priority arbitration sequence used in
most microcomputer applications. Once an interrupt is acknowledged and is being ser-
viced by an interrupt service routine, it is up to the programmer to disable all interrupts,
or selected interrupts, if the interrupt service routine is not itself to get interrupted. If,
for example. an interrupt were to be acknowledged at priority 3 {Interval Timer 3), in the
normal course of events the 8080A CPU will disable all interrupts upon acknowledging
any interrupt. Therefore the Interval Timer 3 interrupt service routine will deny any
other interrupt request, whatever its priority, until the Interval Timer 3 service routine
completes execution. If the Interval Timer 3 interrupt service routine were to im-
mediately enable all interrupts, then any other interrupt request would be
acknowledged, irrespective of priority.

If you want to ensure that only higher priority requests interrupt the Timer 3 service
routine, then the Timer 3 service routine must begin by outputting a mask to disable all
lower level interrupts at the TMS 5501; then it must enable all interrupts at the CPU.
Here is the necessary instruction sequence:

MVI TMS8.07H :OUTPUT MASK TO REGISTER 8 OF TMS 5501
El ;ENABLE INTERRUPTS

The mask-output in this case has the value 07, since mask bits 0. 1 and 2 only must be
set to 1, enabling the highest three interrupt priority levels.

Let us now look at the nonstandard features associated -} TMS 5501
with TMS 5501 interrupt handling logic. First of .all. so ‘NONSTANDARD
long as there is an unacknowledged interrupt request, FEATURES

Status register bit 5 is set to 1; next the RST instruction ob-
ject code for the highest level interrupt request is stored in TMS 5501 Register 2. This
allows you to bypass normal interrupt processing logic and poll the TMS 5501 instead.

4-187



In order to bypass interrupt logic. simply disconnect the TMS 5501 INT output from the
8080A INT input. You can still identify interrupt requests occurring within the TMS
5501 by reading the TMS 5501 Status register. If bit 5 of the Status register is 1, then
one or more interrupt requests are active within the TMS 5501. In order to determine
which is the highest level active interrupt request, read the contents of TMS 5501
memory location 2. The RST instruction object code corresponding to the highest
priority interrupt request will have been assembled in this location. Bits 3, 4 and 5 of
the RST instruction object code identify the priority level. Thus you can determine
which of the eight priority levels was the highest active interrupt request. Here is a typi-
cal polling sequence:

‘ASSUME THAT THE TMS 5501 ADDRESS SPACE CONSISTS OF 16 MEMORY
:LOCATIONS FROM 8000 THROUGH 800F. TMS5 IS THE SYMBOL ASSIGNED

.TO THE BASE ADDRESS
TMS5 EQU 8000H

;TEST STATUS REGISTER FOR INTERRUPT PENDING
LDA TMS5+3 :LOAD STATUS TO ACCUMULATOR

ANI 20H [ISOLATE BIT 5
JNZ TMS5+2 IF NOT ZERO, AN INTERRUPT HAS BEEN
;REQUESTED

It is worth spending a minute looking at the three-instruction sequence illustrated
above. The TMS 5501 Status register contents are loaded into the Accumulator by the
LDA instruction. The next instruction isolates bit 5. If bit 5 is 1. then an interrupt has
been requested, and the next instruction, a JNZ, branches program execution to a
memory location within the TMS 5501 itself. Will that work? Indeed, it will. The label
TMS5+2 addresses TMS 5501 Register 2. which contains an RST instruction’s object
code; this is the object code which would have been output in response to a normal in-
terrupt acknowledge. What the JNZ instruction does is cause this RST instruction’s ob-
ject code to be executed next; and that is precisely the logic sequence which a normal
interrupt response would have implemented.

Notice that the very simple method we have illustrated for polling on status only works
if the TMS 6501 can be addressed as memory locations rather than 1/0 ports.

TMS 5501 PARALLEL 1/0 OPERATIONS

It is very easy to handle simple parallel 1/0, without handshaking, using the TMS
5501. This is equivalent to 8255 Mode 0 operation. TMS 5501 address 1 accesses the
parallel 8-bit input port, while address 7 accesses a parallel 8-bit output port (see Table
4-16). Assuming that the TMS 5501 is addressed as memory, input and output opera-
tions are handled using any memory reference instructions.

A very limited amount of parallel 1/0 handshaking is available. The SENS interrupt
input signal can be used by external logic either to indicate that it has read output data,
or to indicate that it has transmitted input data. However, the TMS 5501 device itself
has no control signals which can be used to prompt external logic: that is to say. the
TMS 5601 has no signal equivalent to the 8265 OBF control. When comparing the
parallel I/O capabilities of the TMS 5501 with the 8255, therefore, we conclude that
8265 Mode 0 operations can be duplicated without problems, but neither Mode 1 nor
Mode 2 parallel 1/0 operations with handshaking can be dupticated. Only a primitive
level of parallel I/0 with handshaking exists within the TMS 5501 and even this exists
at the expense of external interrupt logic.

4-188



TMS 5501 SERIAL I/0 OPERATION

A significant asynchronous, serial 1/0 capability is provided by the TMS 5501.
Synchronous serial 1/0 is not supported.

There are very significant differences between the implementation of
asynchronous serial 1/0 by the TMS 5501, as compared to the 8251 USART.

The TMS 5501 has separate serial transmit and receive pins (XMT and RCV). but it has
no accompanying handshaking control signals; instead 5th and 6th priority interrupts
identify Receiver Buffer full and Transmit Buffer full, respectively. Bits 2, 3, 6 and 7 of
the Status register {addressable location 3) identify the condition of a serial receive data
stream.

When using the TMS 5501, you have to continuously read in the contents of the Status
register and test the condition of appropriate status bits in order to implement standard
serial receive logic; however, in the end you can implement the same serial receive
logic as is provided automatically by the 8261 USART. Here is the relationship between
the TMS 65501 and the 8251 USART controls:

8251 USART  TMS 5501 EQUIVALENT

TxRDY Status register bit 4
TxE None

TxC Baud Rate register
RxRDY Status register bit 3
RxC Baud Rate register
SYNDET None

Probably the most significant difference between TMS 5501 and 8251 USART control
is the fact that TMS 5501 baud rate is programmed by outputting an appropriate Con-
trol code, while it is clocked by rate signals input to the 8251 USART. The TMS 5501
advantage is that the TMS 5501 does not need external baud rate clock generation
logic: however there must be a very precise synchronization between the TMS 5501
and whatever external logic it is communicating with. Minor timing differences are no
problem when using an 8251 USART since a clock signal can accompany the serial
data stream. Minor timing differences can be intolerable when using the TMS 5501; a
small difference between TMS 55601 baud rate and external clock signals can generate
very significant errors.

TMS 5501 INTERVAL TIMERS

The TMS 5501 has five programmable Interval Timers. Each timer can be loaded
with an initial count ranging from 01 {lowest) through FFq¢g (highest). Each Timer
will decrement one count every 64 microseconds. As soon as a programmablie
timer counts out to zero, it requests an interrupt. In our discussion of TMS 6501 in-
terrupt logic, we have defined the priority levels assigned to the various Interval Timers.
Notice that interval Timer priorities have been spread across the range of priority levels.
By using Interval Timer 1 or 2, you can be sure of precise time intervals, since an inter-
rupt request will be acknowledged with little or no delay. Timers 4 and 5, being the
lowest priority. can be used to generate less precise time intervals. It is conceivable that
interrupt requests originating at these two timers might have to wait a significant
amount of time before being serviced — if there is any degree of interrupt traffic within
the microcomputer system.

Loading a O value into an Interval Timer causes an immediate interrupt request.

When a nonzero value is loaded into an Interval Timer, it starts to count down im-
mediately. If a new value is loaded into an Interval Timer while it is halfway through
counting out. then the new value will be accepted; it will override the previous value
and subsequently will be decremented. Therefore the Interval Timers are retriggerable.

Once an Interval Timer counts out, it halts.

4-189



