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1 Appendix A: Expected estimators and information matrix1

Expected estimators. From the negative log-likelihood of the model expressed in equation (3) in the2

article, we derived an expression of the asymptotic density and intercept estimators in the system of equations3

1. It shows that the density estimators minimize a weighted sum of Kullback-Leibler divergences from the4

true to estimated occurrence densities. We note in the following ni := |Zi| and θi = (αi, βi).5

E((γ̂, β̂1, ..., β̂N )) = argmin
γ,β1,...,βN

∑N
i=1(

∫
D
sλidµ)DD

KL(sλi||sγλi(0,βi))

∀i ∈ [|1, N |], E(α̂i) = log(
∫
D
sλidµ/

∫
D
sE(γ̂) exp(E(β̂i)

Tx)dµ)

(1)
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Proof:6

E(θ̂)

= lim
n1,...,nN→∞

argmin
θ
− log(p(Z1, ..., Zn|θ))

= argmin
θ

lim
n1,...,nN→∞

N∑
i=1

ni

( ∫
D
sγλ

i
θi
dµ

ni
−

∑ni
k=1 log(sγ(z

k
i )λ

i
θi

(zki ))

ni

)
= argmin

θ

N∑
i=1

lim
ni→∞

ni

( ∫
D
sγλ

i
θi
dµ

ni
−

∑ni
k=1 log(sγ(z

k
i )λ

i
θi

(zki ))

ni

)
= argmin

θ

N∑
i=1

lim
ni→∞

ni

( ∫
D
sγλ

i
θi
dµ

ni
−
∫
D
s(z)λi(z)∫
D
sλidµ

log(sγ(z)λiθi(z))µ(dz)

)
Large number law

and transfer theorem

= argmin
θ

N∑
i=1

(
∫
D
sλidµ)

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

+
∫
D

sλi∫
D
sλidµ

log(sλi)dµ−
∫
D

sλi∫
D
sλidµ

log(sγλ
i
θi

)dµ

)
Large number law

+ independent term

= argmin
θ

N∑
i=1

(
∫
D
sλidµ)

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

+
∫
D

sλi∫
D
sλidµ

log

(
sλi

sγλiθi

)
dµ

)
= argmin

θ

N∑
i=1

(
∫
D
sλidµ)

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

− log

( ∫
D
sγλ

i
θi
dµ∫

D
sλidµ

)
+
∫
D

sλi∫
D
sλidµ

log

(
sλi

∫
D
sγλ

i
θi
dµ

sγλiθi

∫
D
sλidµ

)
dµ

)
= argmin

θ

N∑
i=1

(
∫
D
sλidµ)

(
nlogL(αi) +DD

KL(sλi||sγλiθi)
)
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Where nlogL(αi) :=

∫
D
sγλ

i
θi
dµ∫

D
sλidµ

− log

(∫
D
sγλ

i
θi
dµ∫

D
sλidµ

)
= − log


( ∫

D
sγλ

i
θi
dµ∫

D
sλidµ

)1

1!
exp

(
−
∫
D
sγλ

i
θi
dµ∫

D
sλidµ

) is the8

negative log-likelihood of a Poisson regression with a single count of value one. The likelihood is maximized9

when the Poisson parameter
∫
D
sγλ

i
θi
dµ/

∫
D
sλidµ = 1, which then minimizes nlogL(αi) with nlogL(αi) = 0,10

and translates into αi = log(
∫
D
sλidµ/

∫
D
sγ exp(βTi x)dµ). In other words, we can choose αi to minimize11

nlogL(αi) whatever the values of γ, β1, ..., βN , s, λ1, ..., λN . This means that the minimization of the whole12

sum with respect to γ, β1, ..., βN is unaffected by the terms (
∫
D
sλidµ)nlogL(αi) which can be removed in the13

expression of E(γ̂, β̂1, ..., β̂N ), and gives us the first equation of system 1. The second equation of 1 is shown14

by remarking that, conversely, the term DD
KL(sλi||sγλiθi) is totally independent of αi. Indeed, when replacing15

αi by αi + δ we have:16

DD
KL(sλi||sγ exp(αi + δ + βTi x)) =

∫
D

sλi∫
D
sλidµ

log
(
sλi

∫
D
sγ exp(αi+δ+β

T
i x)dµ

sγ exp(αi+δ+βTi x)
∫
D
sλidµ

)
dµ

=
∫
D

sλi∫
D
sλidµ

log
(
eδsλi

∫
D
sγ exp(αi+β

T
i x)dµ

eδsγ exp(αi+βTi x)
∫
D
sλidµ

)
dµ

=
∫
D

sλi∫
D
sλidµ

log
(
sλi

∫
D
sγ exp(αi+β

T
i x)dµ

sγ exp(αi+βTi x)
∫
D
sλidµ

)
dµ

= DD
KL(sλi||sγ exp(αi + βTi x))

17

Finally, the computation of the expected estimators can be separated as follows. First, the density param-18

eter estimates γ, β1, ..., βN are given by resolving the first equation of the system 1, and then the intercept19

parameter estimates α1, ..., αN are given by resolving the other equations.20
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Fisher information matrix of the model. Here we describe I(θ), the global Fisher information matrix21

of our model parameters, and show its particular structure. Note that the Fisher information matrix is also22

the Hessian, or curvature, matrix of the negative log-likelihood. Indeed, I(θ) includes the second and cross23

derivatives of the negative log-likelihood described in equation (3) of section 2.2 - Inference of the arti-24

cle (see also Bickel and Doksum [2015], section 6.2.2 , p.386, for more details on the Fisher information matrix).25

26

Because of our model structure, I(θ) has many 0. We compute its non-null submatrices as follows. To27

simplify the notations, we consider here that all species densities are functions of the same vector of environ-28

mental features x, such that ∀z ∈ D,x(z) ∈ Rp.29

30

βi ∈ Rp is the vector of parameters that model species i density in the environmental space for any31

i ∈ [|1, N |]. The Fisher information matrix for this parameter is derived from the second and cross derivatives32

of the negative log-likelihood, in equation equation (3) of the article, with respect to the components of βi.33

That is:34

I(βi) =
∫
D
xxT sλiθidµ35

36

αi ∈ R is the intercept parameter of species i that is directly linked to the global abundance and detec-37

tion/reporting probability of the species. It equals the total expected occurrence count of species i:38

I(αi) =
∫
D
sλiθidµ = E(ni)39

40

γj ∈ R is the parameter of the sampling effort in cell j. The cross information between cell j and j′ is null41

when j 6= j′ cells form a partition of D and do not intersect. It equals the total expected occurrence count of42

cell j:43

44

I(γj) =
N∑
i=1

∫
D
sλiθidµ

= eγj
N∑
i=1

∫
cj
λiθidµ

= E(nj)

(2)

The cross information of γj and βi is written:45

I(γj , βi) =
∫
cj
xeγjλiθidµ46
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47

The cross information of γj and αi equals the expected occurrence count of species i in cell j:48

I(γj , αi) =
∫
cj
eγjλiθidµ = E(nji )49

50

The cross information of βi and αi is written:51

I(βi, αi) =
∫
D
xsλiθidµ52

53

The remaining information matrix is null. In particular we have:54

I(γ) =


I(γ2) 0 0

0
. . . 0

0 0 I(γQ)

55

Thus, we exhibit the structure of I(θ) as follows:56

57

I(θ) =



I(γ) I(γ, α1)T I(γ, β1)T . . . I(γ, αN )T I(γ, βN )T

I(γ, α1) I(α1) I(β1, α1)T 0 0 0

I(γ, β1) I(β1, α1) I(β1) 0 0 0

... 0 0
. . . 0 0

I(γ, αN ) 0 0 0 I(αN ) I(βN , αN )T

I(γ, βN ) 0 0 0 I(βN , αN ) I(βN )



(3)

2 Appendix B: Model identifiability and robustness58

2.1 Necessary and sufficient conditions for structural identifiability.59

The structural identifiability of a model means that, for any set of true parameters, there are two equivalent60

properties: (i) the parameter estimates converge to the true parameters for any infinite sample, (ii) the61

estimates are unbiased, i.e. they are exact in expectation. Our model is structurally identifiable (for all62

sets of parameters) in the multi-species case if it is structurally identifiable in the single-species case. The63

single-species case is a Poisson process whose log-linear intensity function may be noted z → θT v(z) where64

∀z ∈ D, v(z) = (1, 1z∈c2 , ..., 1z∈cQ , x1(z), ..., xp(z)), containing the intercept, the indicator functions of the65

cells cj , and the environmental features vector. Then, according to the CNS identifiability condition shown for66
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log-linear Poisson processes in Rathbun and Cressie [1994], the model is identifiable if and only if the matrix67 ∫
D
v(z)v(z)T dz is of full rank, i.e. of rank 1 + p+Q− 1.68

This condition means that there must be no linear condition of the non-constant functions of v that is69

constant. This condition is fulfilled if there is no linear combination of the environmental features that is70

constant across all sampling cells. For a single environmental feature, this would mean that this feature71

must vary inside at least one sampling cell. In the multivariate case, a simple interpretable identifiability72

condition is hard to provide. Fulfilling the condition above is sufficient to ensure unicity and convergence of73

the estimator for any dataset. However, for a finite number of occurrences, being close to non-identifiability is74

often a synonym of facing numerical approximation problems in the likelihood optimization, or getting high75

correlations between distinct parameter estimators. We need stronger conditions to ensure good estimability76

([Jacquez and Greif, 1985]) of the model parameters. We thus advise the user, after having fit the model, to77

check the condition number of the inverse observed Fisher information matrix. This matrix may be computed78

by replacing parameters of the information matrix in equation 3 with their estimates. The closer the condition79

number is to 1, the lower the global covariance between pairs of distinct parameter estimators.80

Another option for the user, before fitting the model, is to numerically compute the condition number of81

the matrix
∫
D
v(z)v(z)T dz when designing the sampling mesh. Then, the user may choose a sampling mesh82

that has a condition number inferior to 106 (in our experience) while keeping in mind the other conditions83

provided in the article. This may directly eliminate some designs and is much faster than fitting the model and84

computing the condition number for the whole information matrix, even though the latter is a more accurate85

indice of estimability as it accounts for the data point distribution.86

2.2 Remarks on model robustness.87

The structural identifiability of the model means that we expect good separation of the sampling effort density88

and the species density in our estimates, but this is on the restrictive condition that the model is well specified.89

The sampling effort and species density model representation must be able to exactly fit their true values. In90

general, this does not happen in reality, as it is not realistic to assume that sampling effort is constant per91

sampling cell. The ability of a statistical model to converge to estimates that are close to the true values even92

though the model specification is wrong is called its robustness. The simulation study described in the article93

shows that our estimates are robust as long as the sampling effort variation within cells is reasonable. In the94
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following section, we provide more detail on the conditions that induce bias in the model. First, we describe95

two examples where such bias appeared, then, we provide theoretical arguments to explain what type of model96

misspecification causes bias.97

Lack of robustness: Two examples. In profile (3) of the simulation experiment in Appendix F, the98

sampling model does not allow the estimate to converge exactly with the true sampling model, which decreases99

continuously as the environmental feature increases. As the sampling cells are segments along the environ-100

mental gradient, the sampling effort actually decreases as the environmental variable increases in every cell.101

In this setting, we observe a significant deviation between the sampling effort estimate and the species density.102

As can be seen in Figure 3, the species density modes both deviate on the left of the environmental range,103

compensating the underestimation of the sampling effort in this range. This indicates that the error on the104

parameters of both species have the same sign. This bias thus coincides with a trend of monotonic variation105

in the true sampling within the model sampling cells.106

Bias also appears in case x:alti H:-20 of the simulation experiment described in the article. The environ-107

mental variable here is the elevation gradient, a variable that negatively impacts the sampling effort and that108

has a much finer resolution than the sampling cells and varies strongly inside certain cells. This bias does not109

appear as much in the case of the precipitation variable (x:chbio12). This is probably because, even though110

precipitation is linked with sampling effort in the same way as elevation, it varies much less within sampling111

cells.112

Theoretical arguments. Here we clarify the robustness problem and then provide some mathematical113

arguments that corroborate the previous empirical observations. In the single species case, we derive from114

equation 1 the following estimator expectation:115

E(γ̂, ˆbeta) = argmin
γ,β

DKL(sλ ◦ x||sγλ0,β ◦ x)

The model is optimized so that the variation of the fitted occurrence density sγλβ ◦ x across space fits116

the variation of observed occurrence density sλ ◦ x. When the model is misspecified for the sampling effort,117

i.e. s /∈ {sγ , γ ∈ RQ−1}, then the best approximation of sλ ◦ x is not necessarily the product of λ ◦ x and118

sγBCCA := argmin
γ

DKL(sλ||sγλ), the best cell-wise constant approximation (BCCA) of s for λ. We note that119

bias due to a lack of robustness appears if there is a parameterization of the sampling effort γ∗ ∈ RQ−1 that120
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maximizes the likelihood E(γ̂) = γ∗ but is not the BCCA γ∗ 6= γBCCA. This happens if DKL(sλ||sγ∗λE(β̂)) <121

DKL(sλ||sγBCCAλ). In this case, the estimator of the species density λE(β̂) will be necessarily biased (λE(β̂) 6= λ)122

because, by definition, the BCCA is the solution that maximizes the likelihood if the estimator of species density123

is unbiased. Thus, a bias due to lack of robustness results in a deviation of both the sampling effort and the124

species density estimators from the values that we want to obtain.125

Secondly, we propose an explanation regarding the properties of s that cause a lack of robustness in our126

model. We can characterize this phenomenon more accurately in the multi-species case with a re-expression127

and analysis of the asymptotic model negative log-likelihood given in equation (1) of Appendix A. By128

re-expressing the equation with a single environmental variable x ∈ Im(x), we obtain the equation 4. For129

large samples, fitting the model is equivalent to minimizing the right term of equation 4, where the terms130

ErrWj

s,λi(s, sγ) and ErrWj

s,λi(λ
i, λiβi) can be seen as logarithmic density errors over the range of environment Wj131

for the sampling effort and the species i density, respectively. Those errors are spatially weighted by the132

occurrence density of species i, s λi ◦ x, and its number of occurrences ni. If sampling effort s is badly133

approximated by the sampling mesh, i.e. by the BCCA, and if s shows a strong and monotonic co-variation134

with x within cells, then ErrWs,λi(s, sγ) can show monotonic variation along the environmental gradient. The135

effect can be counterbalanced by an opposite variation profile in the error terms of the species densities, which136

can be achieved by adjusting their parameters to minimize the overall error. Such lack of robustness of the137

sampling mesh to environmentally structured variations within cells is a consequence of the latent lack of138

identifiability of the model. In contrast, if the sampling effort variation within cells is independent from that139

of the environmental variables, no bias is caused, whatever the strength of sampling effort variation. This140

problem is related to the problem of spatial confounding in spatial statistics Hodges and Reich [2010], or to141

interlinked biases between covariates and purely spatial effects in generalized linear mixed models.142

{γ̂, β̂1, ..., β̂N} = argmin
γ,β1,...,βN

∑B
j=1

∑N
i=1 ni

(
ErrWj

s,λi
β∗
i

[s, sγ ] + ErrWj

s,λi
β∗
i

[λiβ∗
i
, λiβi ]

)
µ(x−1(Wj))

Where (Wj)j∈[|1,B|] is a partition of Im(x) into small intervals

and ∀f, g ∈ R+D densities over D

ErrWs,λ[f, g] :=

∫
x−1(W )

s(z)λ◦x(z)(log(f)−log(g))dz
µ(x−1(W ))

(4)

Note that in equation 4, we consider that all densities integrate to 1 over D.143
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3 Appendix C: Estimation variance analysis144

Our model is in the canonical exponential family, and thus the vector or parameter estimators θ̂ := (γ̂, α̂1, β̂1, ..., α̂N , β̂N )145

asymptotically follow a multivariate Gaussian distribution (see Bickel and Doksum [2015], section 5.3.3, p.322-146

323). In this case of one realization from a Poisson process, the variance-covariance matrix is simply the inverse147

of the Fisher information matrix, introduced in equation 3 of Appendix A.148

Σ(θ̂) = I(θ)−1.149

150

Effect of occurrence rate. We used this formula and equation 3 in the R script Variance_Script.R151

(downloadable from the article Github repository: https://github.com/ChrisBotella/SamplingEffort) to152

efficiently compute the model parameters variance-covariance matrix for a given scenario: a spatial domain D,153

sampling effort s, species number N and intensity λ1, ...λN (defined from their density and expected occur-154

rence n1, ..., nN ) and the model sampling cells. We computed the variance for profile 2 of the complementary155

simulation setting (see Appendix F). We set the number of occurrences for species 1 to 100 while varying156

the number of occurrences for the other species, conversely. Figure 1 shows, in the upper panel (resp. lower157

panel), how species 1 (resp. 2) parameter variance decreases when increasing the number of occurrences of a158

species 1 (resp. 2) through the curve in blue (resp. curve in red). The upper panel (resp. lower panel) also159

shows, through the curve in red (resp. in blue), that the variance of the focal species 1 (resp. 2) parameter160

decreases when increasing the occurrence rate of the other species 2 (resp. 1) while the occurrence rate of the161

focal species is kept constant. Indeed, increasing the occurrences of any species enables the model to better162

estimate the sampling effort, which makes the estimation of every other species parameter easier . In equation163

2, we see that the information gained on the sampling effort in cell j is the expectation of the total number164

of occurrences in this cell E(nj) of all species so that each species contributes proportionally to its number165

of occurrences in the cell to improve the estimation of γj . Still, as shown by Figure 2, the indirect variance166

reduction mechanism from one species to another is slower than increasing the occurrence rate of the focal167

species itself.168

169
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Effect of removing the parameter. As proposed in the ’Model design guidelines’ paragraph of section170

2.1 of the article, we can drastically reduce the estimation variance in all species parameters by excluding an171

environmental variable from the model of one species (say species i) while keeping it in the model training172

data. This is a special case of conditional estimation (see next paragraph) where we condition on βi = 0. It173

means that we assume a priori that species i is indifferent to variation in the environmental variable across the174

study domain D. In this case, the model knows that the species intensity is constant along this environmental175

variable (all others are kept constant) and can then use the variation in occurrence concentration along this176

gradient to better estimate the variation in sampling effort. We show this in the same theoretical context as177

in the previous paragraph, which corresponds to the sampling effort profile 2 of the simulation experiment.178

We now compute the asymptotic parameter variance of species 1 (β1) given that we know the exact niche179

parameters of species 2 (β2) along the environmental variable x. This variance is simply obtained by removing180

the columns and lines of the information matrix I(θ) (see equation 3 in Appendix A) that are associated with181

β2, obtaining I(θ−β2
), and numerically inverting I(θ−β2

) to get the new estimators variance-covariance matrix182

Σ(θ̂−β2
). In the upper panel of Figure 1 we represent the estimation variance on density parameters of species183

1 extracted from Σ(θ̂−β2) with a growing occurrence rate for species 1 (purple curve) or species 2 (green curve).184

We can see that (i) the variance is always lower or equal compared to the cases where β2 is estimated (green185

le red, purple le blue), (ii) it is lower for a small sample size (for 100 occurrences, green is well below red, and186

purple is well below blue), (iii) it enhances the indirect variance reduction effect by increasing the occurrence187

rate on another species (green is well below red for all occurrence rates). To lighten the graph, we did not add188

to the lower panel the effect of removing parameters β1 on estimation of β2, but it works in the same way.189

Variance reduction with conditional estimation, the general case. The previous paragraph showed190

that when setting the parameters βi of species i to 0, estimation variance is reduced on all other species191

parameters. We show this for a specific simulation scenario that is only a particular case of conditional192

estimation, i.e. estimating some parameters when the value of others is given, which can be used more broadly193

with our method. We show here mathematically that (i) the variance reduction is not specifically due to the194

chosen simulation scenario but appears in any case, and (ii) it appears whatever the parameters θi over which195

we condition. We first recall that when we have many occurrences for all species, we have the below (see Bickel196

and Doksum [2015], section 5.3.3, p.322-323):197
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lim
n1,...,nN→∞

L(θ̂) = N (θ,Σ(θ))

Here we re-order the parameter estimation vector θ̂ = (γ̂, θ̂1, ..., ˆθi−1, θ̂i+1, ..., θ̂N , θ̂i) and decompose its198

variance-covariance matrix as follows:199

Σ(θ) =

Σ−θi ΣTc

Σc Σθi

200

We also note θ̂−i := (γ̂, θ̂1, ..., ˆθi−1, θ̂i+1, ..., θ̂N ). The Gaussian conditioning theorem states that the conditional201

law θ̂−i|θ̂i is a multivariate Gaussian distribution with variance-covariance matrix Σ(θ−i) = Σ−θi −ΣTc Σ−1θi Σc.202

The individual variances of all parameters are the diagonal elements of the latter matrix. We can now easily203

show that they are all smaller than the original variances, i.e. the diagonal elements of Σ−θi , because the204

diagonal elements in the matrix ΣTc Σ−1θi Σc are all strictly positive. Indeed, Σ−1θi is positive definite as the205

inverse of Σθi , which is positive definite as a variance-covariance matrix. Then, the jth diagonal element206

of ΣTc Σ−1θi Σc is of the form aTj Σ−1θi aj > 0 (where aj is jth column of Σc) by definition of positive definite207

matrices. In summary, the variance reduction of the estimator conditionally to the parameters of species i is208

strict whatever the value of θi.209

Effect of the number of sampling cells. With the same setting, we evaluate the effect of the number210

of modeled sampling cells, evenly spaced along the longitude of the square domain. In Figure 2, we plot211

the asymptotic estimation variance on species parameters, computed numerically through the inversion of the212

information matrix, as a function of the number of cells. All estimator variance increases with the number of213

cells, but not at an equal speed for all types of parameters. More precisely, we see that the variances on β1,1214

and β2,1, which both control the optimum of the species Gaussian density along the environmental gradient x,215

explode very quickly, whereas the parameters controlling the niche breadth remain reasonable even for 20 cells.216

Above 20 cells, the model shows a weak numerical identifiability, checked through the high condition number217

of the information matrix. When including too many cells, we decrease the ability of the model to separate218

the effect of the environmental variable, which varies less within each cell, from the cell effect. However,219

the identifiability may not concern all parameters simultaneously: the species niche breadth parameters do220

not seem very sensitive to the increased number of cells. However, the sampling effort approximation error221

increases as we decrease the number of cells, and this effect is not taken into account in the estimation variance.222

Thus, determining the best size of cells should be based on cross-validation using a density evaluation metric223
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Figure 1: Asymptotic species density parameters estimation variance as a function of the number of each
species occurrence for the simulation setting of profile 2 described in section 2.4 of the article. β1,1 and β1,2
(resp. β2,1 and β2,2) are respectively the first and second parameters modeling the Gaussian density of species
1 (resp. species 2) along the environmental gradient x.

(Tsybakov [2009]). For a K-fold cross-validation, we recommend building the folds so that each one contains224

a proportion of approximately 1/K of the occurrences of every individual cell, as no sampling cell should be225

empty or scarce for training.226

4 Appendix D: Inference and implementation details227

For a given mesh across which a cell-wise constant sampling effort is defined, we fit log-linear Poisson processes228

for multiple species with a shared term in their linear predictor, i.e. the log-sampling effort. We here present a229

maximum-likelihood fitting procedure. We use an approximation of the Poisson process likelihood by a Poisson230

regression likelihood using background points, as described in Berman and Turner [1992] and Warton et al.231

[2010], which we extend to the joint likelihood of a marked Poisson process.232

We consider the set of observed occurrences for any species i ∈ [1, N ] Zi = {(zi1, i, 1), ..., (zini , i, 1)}, i.e. a set233

of points marked with the species label i and the state 1. We have to maximize the joint likelihood of Z1, ..., ZN234
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Figure 2: Asymptotic species density parameters estimation variance as a function of the number of modeled
sampling cells (regularly spaced along the longitude of the domain) in the simulation setting of profile 2
described in section 2.4 of the article. β1,1 and β1,2 (resp. β2,1 and β2,2) are respectively the first and second
parameters modeling the Gaussian density of species 1 (resp. species 2) along the environmental gradient x.
Above 20 cells, we began to diagnose weak numerical identifiability (through the condition number of I(θ)) of
the model, making the variance-covariance matrix unreliable.
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with respect to all model parameters introduced in the previous section θ := (α1, ..., αN , β
1, ..., βN , γ1, ..., γC):235

p(Z1, ..., ZN |θ) =
∏N
i=1

[
(
∫
D
s(z)λi(z)dz)

ni

!ni
exp

(
−
∫
D
s(z)λi(z)dz

) ni∏
k=1

s(zik)λi(z
i
k)∫

D
s(z)λi(z)dz

]
⇔ p(Z1, ..., ZN |θ) ∝

∏N
i=1

[
exp

(
−
∫
D
s(z)λi(z)dz

) ni∏
k=1

s(zik)λi(z
i
k)

]
⇔ log(p(Z1, ..., ZN |θ)) =

∑N
i=1

[
ni∑
k=1

log(s(zik)λi(z
i
k))−

∫
D
s(z)λi(z)dz

] (5)

The likelihood is factorized over species as we assume that their processes are independent given the236

environment.237

The integral terms are often very costly to compute exactly when dealing with multiple high resolution238

rasters of environmental variables. Instead we use a numerical approximation. Each integral is replaced by239

a weighted sum of sλi computed at some quadrature points Zqi = {(zq1 , i, 0), ..., (zqQ, i, 0)} marked with their240

species label i and state 0 indicating it is a background point, associated with weights wi1, ..., wiQ, selected241

such that
∫
D
s(z)λi(z)dz ≈

∑Q
k=1 wks(z

q
k)λi(z

q
k). Background points are also called quadrature points, or242

pseudo-absences in the Poisson process SDM literature (Warton et al. [2010]).243

Numerical quadrature strategy and background points. We chose to draw uniformly background244

points to achieve the approximation of the integral through the unbiased Monte Carlo estimator. More245

precisely, Berman and Turner [1992] re-expressed the likelihood by including the points of Zi among the246

quadrature points Zq, and by defining adapted weights. We note w(z, i, e) the weight associated with the247

marked point (z, i, e).248

log(p(Z1, ..., ZN |θ)) ≈
N∑
i=1

∑
(z,i,e)∈Zi∪Zqi

1e=1 log(s(z)λi(z))− w(z, i, e)s(z)λi(z)

=
∑

(z,k,e)∈∪i(Zi∪Zqi )
w(z, k, e) [ y(z, k, e) log(s(z)λi(z))− s(z)λi(z) ]

(6)

Where the y(z, k, e) := 1e=1/w(z, k, e) are the Poisson regression pseudo-counts (non-integers), and we249

recall that by design in our model s(z)λi(z) = exp(
C∑
j=1

γj1z∈cj + αi + βiTxi(z)). We end up with a Poisson250

regression log-likelihood that satisfactorily approximates our initial log-likelihood when there are enough prop-251

erly selected quadrature points. We use the same quadrature points and associated weights for all species.252

Now, we need to explain how those points are selected and their weights computed w(z, i, e). The Monte Carlo253

method is an unbiased way to approximate the integral: we use the average of sλi over uniformly sampled254
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background points on D to approximate the integral
∫
D
s(z)λi(z)dz. However, occurrences in Zi’s are not255

uniformly distributed over D, and we need to ensure that they will not bias our approximation. For this256

purpose, the sum of weights of occurrences is negligible compared to the sum of weights of quadrature points257

and the total sum:258

∀(z, i, e) ∈ ∪i(Zi ∪ Zqi )w(z, i, e) =


|D|

100ni
if e = 1

99|D|
100Q if e = 0

259

This yields the following expression for the approximation of integral term
∫
D
s(z)λi(z)dz:260

∫
D
s(z)λi(z)dz ≈

∑
z∈Zi∪Zqi

w(z)s(z)λi(z)

= 1
100

∑
z∈Zi

|D|
ni
s(z)λi(z) + 99

100

∑
z∈Zqi

|D|
Q s(z)λi(z)

With this setting, all weights sum to |D| (area of D), while weights of species occurrences alone represent261

only 1%, which we note is enough not to bias the approximation in our experience.262

Application to the real dataset. For the real dataset of occurrences, we used an alternative strategy to263

ensure that all the sampling cells had background points and that they captured the environmental variability264

of each cell. We uniformly drew a fixed number (6) of background points uniformly in each sampling cell.265

As each sampling cell had the same size in this case, we could keep the same weighting scheme as previously,266

and the procedure weighted sum also converged to the target integral. We can show this by decomposing the267

integral into a sum of integrals over each sampling cell multiplied by the inverse of the total number of cells268

and then using the Monte Carlo (because points are uniformly drawn inside cells).269

Implementation details. The inference was performed using software for generalized linear models penal-270

ized with L1 (with R package glmnet) to estimate parameter values that maximize the penalized version of271

the likelihood, for given yj , Z1, ..., ZN and w.272

The R code used for fitting the model can be found on the following Github repository: https://github.273

com/ChrisBotella/SamplingEffort. Equation 7 gives the R formula for building the model design matrix274

passed to glmnet.275

276

y ∼ 1 + SamplingCell + species1 : (x11 + ...+ x1p1) + species2 : (1 + x21 + ...+ x2p2)

...+ speciesN : (1 + xN1 + ...+ xNpN )

(7)
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The categorical effect of a point SamplingCell is the effect of its cell. There are C − 1 parameters for277

the sampling effort because it is impossible to identify the global intercept and the parameters of all sampling278

cells. Thus, we needed to choose a way to constrain the effects of the C cells with C−1 parameters, or in other279

words, to define contrasts. We chose the SamplingCell contrasts as contr.sum,
∑C
j=1 γj = 0. This way the280

L1 penalty induces a shrinkage of all sampling cell parameters toward zero, rather than a shrinkage toward a281

reference cell as the contr.treat contrasts would have done. Concerning the species niche parameters, there282

are pi + 1 parameters for species i and different species may depend on different environmental predictors.283

Note that the intercept of species 1 is grouped with the global intercept, again for identifiability reasons. This284

explains why we can only estimate the species intensity and the sampling effort up to a constant factor. Using285

glmnet allows handling sparse matrices and performing our model with a large number of sampling cells,286

environmental features, background points, and occurrences, as explained in the real data illustration section.287

5 Appendix E: Environmental variables tables288

Name Description Values Resolution (m)
CHBIO_1 Annual mean temperature [-10.6,18.4] 1000

CHBIO_5
Max temperature of warmest
month [36.4,6.2] 1000

CHBIO_12 Annual precipitation [318,2543] 1000
etp Potential evapotranspiration [133,1176] 1000
alti Elevation [-188,4672] 90
slope Absolute elevation gradient [0,13457] 90
awc_top Topsoil available water capacity {0, 120, 165, 210} 1000
bs_top Base saturation of the topsoil {35, 62, 85} 1000
spht Aggregated land cover {culti.,for.,past.,urb.,other} 100

Table 1: Table of environmental variables used in this study.
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CLC category description spht category name Raster code
Non-irrigated arable land cultivated 12
Permanently irrigated land cultivated 13
Vineyards cultivated 15
Fruit trees and berry plantations cultivated 16
Complex cultivation patterns cultivated 20
Land principally occupied by agriculture, with
significant areas of natural vegetation cultivated 21
Agro-forestry areas cultivated 22
Pastures grasslands 18
Natural grasslands grasslands 26
Moors and heathland grasslands 27
Sclerophyllous vegetation grasslands 28
Broad-leaved forest forest 23
Coniferous forest forest 24
Mixed forest forest 25
Transitional woodland-shrub forest 29
Continuous urban fabric urban 1
Discontinuous urban fabric urban 2
Industrial or commercial units urban 3
Road and rail networks and associated land urban 4
Airports urban 6
Green urban areas urban 10
Sport and leisure facilities urban 11
Port areas other 5
Mineral extraction sites other 7
Dump sites other 8
Construction sites other 9
Rice fields other 14
Olive groves other 17
Annual crops associated with permanent crops other 19
Beaches, dunes, sands other 30
Bare rocks other 31
Sparsely vegetated areas other 32
Burned areas other 33
Glaciers and perpetual snow other 34
Inland marshes other 35
Peat bogs other 36
Salt marshes other 37
Salines other 38
Intertidal flats other 39
Water courses other 40
Water bodies other 41
Coastal lagoons other 42
Estuaries other 43
Sea and ocean other 44
No data other 48
Unclassified land surface other 49
Unclassified water bodies other 50

Table 2: spht (Aggregated land cover) categories correspondence with Corine Land Cover 2012.
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6 Appendix F: Complementary simulation study, a closer look at the289

density estimates290

6.1 Methodology291

We designed the following simulation study to examine more closely whether our approach allows a reliable292

inference of sampling effort density and species density from observed occurrences of two virtual species with293

heterogeneous sampling effort. Note that we did not use intercepts in the simulation because, as explained294

in section 2.1, we cannot estimate absolute intensity across space but only relative intensity. We evaluated295

the estimation quality as the ability to recover the density over the environmental gradient, because it is296

the space over which both the species intensity and the sampling effort are defined by our design. This297

space is one-dimensional to enable visualization. To reproduce this experiment, one must run the script called298

Simu_and_graphs.R on the article Github repository: https://github.com/ChrisBotella/SamplingEffort.299

300

Spatial domain and species variable. We considered a square spatial domain D = [0, 10]2 where the only301

environmental variable x was a linear gradient from west to east, such that x(z) = z − 5.302

303

Virtual species. The environmental intensity of virtual species was modeled as a Gaussian function over304

the gradient x, i.e. ∀z ∈ D, λi(z) ∝ exp((x(z) − µi)2/(2σ2
i )). This means that the expected x of a given305

species individual is µi (optimum constraint), and the variance of x over many individuals is σ2
i (niche breadth306

constraint), and λi is maximum entropy. We used the following re-parameterization of species density:307

∀z ∈ D, λi(z) ∝ exp
(
− (x(z)−µi)2

2σ2
i

)
∝ exp

(
βi1x(z) + βi2x(z)2

)308

With


βi1 = µi

σ2
i

βi2 = − 1
2σ2
i

⇔


µi = − βi1

2βi2

σi = 1√
−2βi2

309

βi2 being strictly negative. This re-expression will be useful as the method implementation gives us estimates310

of βi1, βi2 for each i (see Inference section). In our simulation study we had two virtual species i ∈ {1, 2} and311

we chose the optima to be µ1 = −2.5, µ2 = 2.5. The standard deviation of their intensities are σ1 = σ2 = 1.6.312
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313

Types of sampling effort. We designed a case where the relative sampling effort strongly depended on the314

environment x, which made it harder to separate sampling effort from species intensity. The relative sampling315

effort is a step function over D depending on the longitude only (like the feature x), and not the latitude. We316

designed three profiles for relative sampling effort:317

1. s(z) = 1x(z)<0. This profile has a constant non-null effort on the western half of the domain, and no318

sampling on the eastern half.319

2. s(z) = 1 + 5 1x(z)∈[−4.5,−2.5[∪[−0.5,1.5[∪[2.5,4.5[. This profile has sharp variation within the sampling cells320

of the model design.321

3. s(z) = 9 ∗ exp(−5x(z))

1 + exp(−5x(z))
+ 1. This profile is a decreasing sigmoïdal function. It has also sharp varia-322

tions within sampling cells, plus they are continuous and monotonic across the domain.323

The fitted sampling model was well specified for type (1). Indeed, the point of discontinuity of the simulated324

sampling effort was the boundary between the sampling cells. Thus, we expected to get exact estimates of325

species niches and sampling effort density. In our test case, the method recovered the species niches with only326

a partial sampling of the environmental range. However, for type (2), the simulated sampling effort varied in327

the middle of some modeled sampling cells, making it impossible to get a perfect estimation. If the method328

is robust, we would expect the sampling effort estimate to approximate the average of the target in every329

sampling cell. The estimation was not perfect for type (3) either. Here, the sampling effort co-varies strongly330

and monotonically with the environmental variable, so it is expected to be the most problematic profile for331

use with this method.332

Simulating species observed points. We drew 200, 000 occurrences for both species in each of the 3333

sampling effort scenarios. For a defined relative sampling effort s and species intensity λ, we drew points334

according to a conditional Poisson process of intensity function sλ over D. This was done using the following335

acceptance-rejection algorithm:336

• Initialization: Determine an upper bound B of sλ on D.337

• Repeat:338

1. Draw a point z ∼ U(D).339
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2. Draw a variable y ∼ U([0, B])340

3. We accept z if y <= s(z)λ(z).341

4. If 200, 000 points are accepted, finish the procedure, otherwise go back to 1).342

We chose 200, 000 points as this is enough for a satisfying convergence of the sampling effort and species343

intensity estimates, as shown by the standard deviation bounding curves of Fig. 3.344

345

Background points. For each experiment, 50, 000 background points were uniformly drawn over D, which346

is enough for likelihood convergence in this simple setting.347

6.2 Results348

We analyze here the reliability of our joint estimation method for two simulated species with three scenarios349

of sampling effort. Fig. 3 shows the mean and standard deviations of estimated relative sampling effort.350

Unbiased niches and sampling effort estimates under good model specifications. Our simulation351

results first show that estimation of the relative sampling effort and of relative species intensity are unbiased352

under the observation scenario (1), i.e. when the species and sampling model is well designed. In scenario (1),353

there was no sampling in the eastern part of the domain, and constant sampling in the western part. The left354

graph of box A on Fig. 3 shows that the model perfectly captures the non-sampled area, and the estimate355

for the western part is almost exact. Center and right graphs of box A show that species intensity is also356

well recovered. The model uses the variation in species points occurrences in the western part to fit the whole357

species intensity model and is then able to make a good prediction on the eastern part. Blue curves in Fig. 3358

represent the observed standard deviation, which approximately indicate the 95% confidence interval (mean359

+/- 2 times the standard deviation) of the estimate over the 20 repetitions of the simulation. We note a small360

bias likely due to numerical approximation in the fitting algorithm. It is not due to the regularization path,361

as we had a bias of similar order with the implementation glmn.362

Approximation bias under bad sampling model design. Secondly, the graphs of box B illustrate the363

results of scenario (2). It shows that even though the sampling effort model neglects actual variation within364

sampling cells, the method provides a reasonably good approximation, as the estimate is often close to the365
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Figure 3: Sampling effort and the two species estimated densities for the three profiles of simulated sampling
effort in the simulation experiment. A. type (1); B. type (2); C. type (3); see the paragraph ’Types of sampling
effort’. Red curves are the mean estimates over 20 repetitions of the simulation scenario, with the blue curves
indicating the approximate 95% confidence interval. Yellow curves are the targets. Sampling density (graphs
on the left) is plotted against longitude, while species density (graphs in the center and right) is plotted against
x values (which are in bijection). The vertical gray lines on the graphs represent the longitudinal limits of
sampling effort square cells.
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average of the true sampling effort in each cell. The species intensity estimates, in the center and right graphs366

of box B, are slightly more biased than in case (1). For scenario (3), illustrated by the densities of box C, we367

see bias in both the estimation of species density and the sampling effort. The species density deviates on the368

left, associated with an underestimation of the sampling effort for low x values and an overestimation for high369

x values.370

7 Appendix G: Assumptions on detection probability and data se-371

lection372

Several assumptions regarding detection probability in the proposed model may deviate from reality.373

1. Detection probability varies similarly across space for all species. Sampling effort was assumed374

to be identical across species. While our model can allow detection probability to vary across species375

(Ris), this is not distinguishable from overall species abundance. We thus assumed detection probability376

density to vary similarly across space for all species, which is not specific to our method (see Fithian377

et al. [2015]). Bias can appear if species detection probability varies differently in space from one species378

to another. For instance, some species might be looked for only in specific areas and such sampling379

peculiarity can induce bias in the estimation of species density.380

2. Homogeneous detection and identification skills across observers. We also made the assumption381

that for each modeled species, the detection and identification probability was identical across observers.382

This may be problematic in citizen science programs, in which identification skills are heterogeneous.383

Thus, it is preferable to include only species that are well identified by most observers. In Pl@ntNet384

data, this is possible thanks to the automatic identification system.385

3. No saturation of interest. Lastly, we assumed the expected number of occurrences to be proportional386

to the local intensity (expected abundance) of the species and the sampling effort, which means that387

there was no saturation of interest. If for instance, observers report a maximum of only one individual388

from the local population, there is saturation of reporting interest, and this may impact the estimation389

of our model. Saturation of interest in observers’ reports is not always problematic. If the number390

of observers is high (everywhere) and their probability of detection of specimens is generally low, then391

estimates provided by our model should not change drastically. However, if the number of observers392
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is low everywhere and their probability of detection is high, then we could expect that our model’s393

estimation of the environmental density will be shrunken toward the uniform density. This assumption394

seems consistent with the citizen science context, but otherwise, occurrence thinning strategies may be395

useful to avoid bias (Boria et al. [2014], Fourcade et al. [2014], Varela et al. [2013]).396
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